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Abstract. We study the Lagrange representation of the wave equation with
generalized Laplacian div T∇. We allow the coefficients—the Young modulus

T and the density ρ—to be L∞ or even nonlocal operators. Moreover, the
Lipschitz boundary of the domain Ω can be split into several parts admitting

Dirichlet, Neumann and/or Robin-boundary conditions of displacement, velocity

and stress. We show well-posedness of this classical model of the wave equation
utilizing boundary triple theory for skew-adjoint operators. In addition we

show semi-uniform stability of solutions under slightly stronger assumptions by

means of a spectral result.

1. Introduction

There is a plethora of studies on the wave equation and it is difficult to even quote
the most significant ones. We simply name [17] for a classical semigroup approach,
since we will employ a semigroup approach as well, and [15], since it regards the
wave equation from the port-Hamiltonian perspective, but of course plenty of other
tools are available as well, e.g., [18]. The (classical) formulation of the wave equation
on a bounded Lipschitz domain Ω ⊆ Rd we are investigating in this article is the
following second order partial differential equation

ρ(ζ) ∂2

∂t2w(t,ζ)=divT (ζ)∇w(t,ζ)− a(ζ)w(t,ζ)− b(ζ) ∂
∂tw(t,ζ), t≥ 0, ζ ∈Ω,

w(0, ζ)=w0(ζ), ζ ∈Ω,

∂
∂tw(0, ζ)=w1(ζ), ζ ∈Ω.

(1)

For the initial discussion we will exclude the terms a and b, as we will take care of
them with a perturbation argument later on. The coefficients T and ρ are the Young
modulus and the material density, respectively. In the standard port-Hamiltonian
approach, cf. [15], one introduces the new state variable

(∇w
ρwt

)
, which yields the

following representation of the wave equation

∂

∂t

(
∇w
ρwt

)
=

(
0 ∇
div 0

)
︸ ︷︷ ︸

=:J1

(
T 0
0 1

ρ

)
︸ ︷︷ ︸

=:Q1

(
∇w
ρwt

)
.

This is the so-called Dirac representation, which is comprised of the formally skew-
adjoint J1 (representing the underlying Dirac structure/subspace) and the bounded,
positive and self-adjoint Q1 (representing the Lagrangian structure/subspace). How-
ever in [5] an alternative so-called Lagrangian representation was proposed, which
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uses ( w
ρwt ) as state variable. The corresponding system is

∂

∂t

(
w
ρwt

)
=

(
0 I
−I 0

)
︸ ︷︷ ︸

=:J2

(
− div T∇ 0

0 1
ρ

)
︸ ︷︷ ︸

=:Q2

(
w
ρwt

)
. (2)

Similar to the Dirac representation, J2 is skew-adjoint and Q2 is formally self-adjoint
and positive. In contrast to the Dirac-representation however, J2 is bounded and
Q2 is unbounded. This formulation also corresponds to the standard method to
turn the wave equation into a first order problem, cf. [17, Sec. 7.4].
Naturally, employing terms like (un)bounded and self-adjoint warrants specifying
the state spaces. For the Dirac representation one chooses L2(Ω)d × L2(Ω) and for
the Lagrange representation it comes naturally to choose H1(Ω)× L2(Ω). In order
to analyze well-posedness for the Dirac representation it suffices to analyze J1 as
Q1 can be incorporated into the inner product and thus does not play a role, cf. [14,
Lem. 7.2.3]. We want to mimic this approach for the Lagrange representation, but
since Q2 is unbounded, it does not immediately provide an equivalent inner product
on the state space, i.e., we want to regard the following almost inner product1

⟨x, y⟩Q2
:= ⟨Q2x, y⟩ =

〈(
− div T∇ 0

0 1
ρ

)(
x1

x2

)
,

(
y1
y2

)〉
= ⟨ 1ρx2, y2⟩ − ⟨div T∇x1, y1⟩.

Applying integration by parts yields

⟨x, y⟩Q2
= ⟨ 1ρx2, y2⟩+ ⟨T∇x1,∇y1⟩ −

〈
ν · T∇x1

∣∣
∂Ω

, y1
∣∣
∂Ω

〉
,

where ν denotes the unit normal vector on ∂Ω. It is worth pointing out that
this expression is only an inner product on the state space H1(Ω) × L2(Ω) if we
additionally impose a boundary condition such as ν · T∇x1

∣∣
∂Ω

= −k1x1

∣∣
∂Ω

, where

k1 is a positive semi-definite operator2 on L2(∂Ω). In that case we obtain

⟨x, y⟩Q2
= ⟨ 1ρx2, y2⟩+ ⟨T∇x1,∇y1⟩+

〈
k1x1

∣∣
∂Ω

, y1
∣∣
∂Ω

〉
and we can appeal to the Friedrichs/Poincaré inequality. Alternatively, the boundary
condition x1

∣∣
∂Ω

= 0 = y1
∣∣
∂Ω

would eliminate the boundary parts completely. In
either case, the above expression induces an equivalent inner product on the state
space H1(Ω)×L2(Ω). Note that the energy of a state x ∈ H1(Ω)×L2(Ω) is given by

E(x) := ⟨ 1ρx2, x2⟩+ ⟨T∇x1,∇x1⟩.

Therefore the inner product ⟨·, ·⟩Q2 is composed of an energy part and a boundary
part. We will construct a boundary triple for the operator in the abstract Cauchy
equation (2), which will enable us to parameterize all dissipative boundary conditions,
i.e., boundary conditions where the solution does not grow. Loosely speaking we
will come to the conclusion that boundary conditions of the form

k1x1

∣∣
∂Ω

+ ν · T∇x1

∣∣
∂Ω

+ k2
1
ρx2

∣∣
∂Ω

= 0

or in terms of w

k1w
∣∣
∂Ω

+ ν · T∇w
∣∣
∂Ω

+ k2∂tw
∣∣
∂Ω

= 0,

where k1 is the positive semi-definite operator from before and k2 is another positive
semi-definite operator on L2(∂Ω), will be well-posed. We point out that in contrast
to the Dirac representation, cf. [15], we can formulate boundary conditions that

1We are a bit sloppy here in not specifying the regularity of the state variables.
2We are in particular interested in multiplication operators that may vanish on parts of the

boundary.
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involve the displacement w itself (additionally to the velocity ∂tw and the normal
stress ν · T∇w).
Additionally, since k1 and k2 are allowed to be semi-definite we can split the boundary
into five (possibly empty) parts and allow the following boundary conditions:

w = 0 on Γ0

ν · T∇w = 0 on Γ1

k1w + ν · T∇w = 0 on Γ2

ν · T∇w + k2∂tw = 0 on Γ3

k1w + ν · T∇w + k2∂tw = 0 on Γ4

(3)

where we assume k1 to be nonzero almost everywhere on Γ2 ∪ Γ4 and k2 to be
nonzero almost everywhere on Γ3 ∪ Γ4, i.e., the vanishing parts are being accounted
for by Γ0 and Γ3 or by Γ0,Γ1 and Γ2 respectively.
Note that Γ0 = ∅ and Γ2 ∪ Γ4 = ∅ (k1 = 0) are allowed, but not simultaneously, i.e.,
we require

k1 ̸= 0 or Γ0 ̸= ∅.

This is necessary to make sure that ⟨·, ·⟩Q2
is an inner product.

In this work, boundary triples are used to show the well-posedness of the boundary
conditions (3). In a related context, boundary triples have also proven useful in [11],
where they are employed to investigate boundary conditions ensuring a Lagrangian
subspace.
Following up on well-posedness, we will investigate stability of solutions. The
dissipative relation on the boundary can be viewed as a boundary feedback or
damping. Damped wave equations have been studied by multiple authors, in
particular Zuazua (e.g., [25]), but more recently (even for the delay case) by Pignotti
et. al. (e.g., [1, 16]). We point out, that opposed to our approach in this article,
stability results for the wave equation usually cover the case, where the damping
happens in the interior and geometric conditions (such as the Geometric Control
Condition) are a necessary cost to pay.
We will pursue an alternative strategy, following [13] in our approach, settling for a
weaker notion than exponential stability, by the name of “semi-uniform stability”, cf.
Section 4. Slightly stronger assumptions on the coefficients T and ρ in conjunction
with dissipativity will prove enough to show at least semi-uniform stability of
solutions to Equation (1). In particular, we have to show that there is no spectrum
on the imaginary axis. A similar approach has been applied to Maxwell’s equations
in [21].

Assumptions. To turn this outline into rigorous mathematics, we now state the
basic assumptions that will be used throughout the remainder of the article, unless
explicitly stated otherwise.

(A1) Let Ω be a bounded and connected Lipschitz domain in Rd.

(A2) Let T ∈ Lb(L
2(Ω;Cd)) with c−1I < T < cI for some c > 0.

For stability additionally: T ∈ L∞(Ω;Cd×d) and Lipschitz continuous.3

(A3) Let ρ ∈ Lb(L
2(Ω;C)) with c−1I < ρ < cI for some c > 0.

For stability additionally: ρ ∈ L∞(Ω;C) and Lipschitz continuous.3

(A4) Let w0 ∈ H̊1
Γ0
(Ω) and w1 ∈ L2(Ω).4

3We identify the L∞ function with the induced multiplication operator.
4Here H̊1

Γ0
(Ω) = {v ∈ H1(Ω) | v|Γ0

= 0}. We will come back to this space in Section 3.



4 B. AIGNER AND N. SKREPEK

(A5) The boundary is split into five open disjoint and possible empty parts
Γ0,Γ1,Γ2,Γ3,Γ4 ⊆ ∂Ω that satisfy

Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 = ∂Ω and

4∑
i=0

µ(Γi) = µ(∂Ω),

where µ is the surface measure of ∂Ω. These conditions ensure that the Γ’s
cover ∂Ω in the sense that the uncovered parts are negligible.

(A6) We assume k1, k2 ∈ L∞(∂Ω\Γ0;R) such that k1, k2 ≥ 0 and k1 ̸= 0 or Γ0 ̸= ∅.
For stability additionally: ∃Γ ⊆ ∂Ω \Γ0 non-empty open such that supp k2 ⊇
Γ.5

(A7) Let a, b ∈ L∞(Ω).6

Remark 1.1. Assumption (A6) is not as general as possible, because otherwise
the formulation would be a bit cumbersome. We could relax the conditions to:
k1, k2 ∈ Lb(L

2(∂Ω \ Γ0)) positive semi-definite such that 1 /∈ ker k1 or Γ0 ̸= ∅. For
stability we additionally ask for

k2f = 0 =⇒ ∃Γ ⊆ ∂Ω \ Γ0 open : f
∣∣
Γ
= 0. (4)

The condition 1 /∈ ker k1 is necessary for Friedrichs/Poincaré’s inequality and (4) is
necessary to apply the unique continuation principle.

In the following we first present a short preliminary section, which serves as a
reminder for well-established concepts such as trace operators and boundary triples,
which we will employ to prove our main results about well-posedness (Section 3)
and stability (Section 4). We will end our article with a conclusion and a short
appendix on the applicability of a unique continuation theorem in Section 4 and an
additional result regarding regularity in the case of the trace maps taking values in
L2(∂Ω).

2. Preliminaries

This section is largely a short recapitulation of established theory that we present
both for the convenience of the reader as well as to establish notation, that we are
going to use in consecutive sections.

2.1. Sobolev Spaces. We clarify/introduce some notation first: We let H1(Ω)
be the space of all L2-functions with distributional derivative also in L2(Ω) to-

gether with the norm ∥·∥H1(Ω) :=
√
∥·∥2L2(Ω) + ∥∇·∥2L2(Ω). In other words, H1(Ω) =(

dom(∇), ∥·∥dom(∇)

)
, where ∇ is the weak gradient on L2(Ω). Similarly, the corre-

sponding space for the divergence operator div f :=
∑d

i=1 ∂ifi is

H(div,Ω) := {f ∈ L2(Ω) |div f ∈ L2(Ω) (in the distributional sense)}.

Note that C∞
c (Ω) :=

{
f
∣∣
Ω

∣∣ f ∈ C∞
c (Rd)

}
is dense in H(div,Ω), see, e.g., [7, Ch. IX

Part A Sec. 2 Thm. 1] or [20, Thm. 3.18].

2.2. Trace Operators. The following can be found in more detail in [15, Appendix
A]. For f ∈ C∞

c (Ω) we can define the map

γ̃0 :

{
C∞

c (Ω) → L2(∂Ω),
f 7→ f

∣∣
∂Ω

.

5This just means that the damping acts on an open set.
6More general assumptions are possible, cf. sections 3 and 4.
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By continuous extension we can extend γ̃0 to a continuous map γ0 : H
1(Ω) → L2(∂Ω),

the Dirichlet trace operator. We define its image as

H
1
2 (∂Ω) := ran γ0 equipped with ∥ϕ∥

H
1
2 (∂Ω)

:= inf{∥g∥H1(Ω) | γ0g = ϕ}.

This space is even a Hilbert space as it can be represented by the quotient space
H1(Ω)/ ker γ0. Note that γ0 is a continuous map from H1(Ω) to H

1
2 (∂Ω) and H

1
2 (∂Ω)

is continuously embedded in L2(∂Ω). Let Γ0, Γ̃ ⊆ ∂Ω be a (measurable) partition
of ∂Ω (up to sets of measure zero). We can restrict γ0f to Γ0, which gives that
γ0
∣∣
Γ0

: f 7→ γ0f
∣∣
Γ0

is continuous from H1(Ω) to L2(Γ0) also. Hence,

H̊1
Γ0
(Ω) := ker γ0

∣∣
Γ0

= {f ∈ H1(Ω) | γ0f
∣∣
Γ0

= 0}

is closed and therefore a Hilbert space equipped with ∥·∥H1(Ω). We define the
corresponding trace space

H̊
1
2 (Γ̃) := γ0H̊

1
Γ0
(∂Ω)

and endow it with ∥·∥
H

1
2 (∂Ω)

. As the functions in H̊
1
2 (Γ̃) are 0 on Γ0 we usually

regard this space as continuously embedded in L2(Γ̃). We define the dual space of

H̊
1
2 (Γ̃) with pivot space L2(Γ̃) as

H− 1
2 (Γ̃) :=

(
H̊

1
2 (Γ̃)

)′
,

i.e., H̊
1
2 (Γ̃) ⊆ L2(Γ̃) ⊆ H− 1

2 (Γ̃) forms a Gelfand triple. The pairing between H̊
1
2 (Γ̃)

and H− 1
2 (Γ̃) is an extension of the inner product of L2(Γ̃):

⟨f, g⟩
H− 1

2 (Γ̃),H̊
1
2 (Γ̃)

:= lim
n→∞

⟨fn, g⟩L2(Γ̃),

where (fn)n∈N is a sequence in L2(Γ̃) converging to f ∈ H− 1
2 (Γ̃) (w.r.t. ∥·∥

H− 1
2 (Γ̃)

)

and g ∈ H̊
1
2 (Γ̃). Moreover, we define ⟨g, f⟩

H̊
1
2 (Γ̃),H− 1

2 (Γ̃)
as the complex conjugate of

⟨f, g⟩
H− 1

2 (Γ̃),H̊
1
2 (Γ̃)

and we will use the short notation

⟨f, g⟩∓ 1
2
:= ⟨f, g⟩

H− 1
2 (Γ̃),H̊

1
2 (Γ̃)

and ⟨g, f⟩± 1
2
:= ⟨g, f⟩

H̊
1
2 (Γ̃),H− 1

2 (Γ̃)
.

For f ∈ C∞
c (Ω)d we can define the map

γ̃ν :

{
C∞

c (Ω)d → L2(Γ̃),
f 7→ ν · f

∣∣
Γ̃
.

By continuous extension we can extend γ̃ν to γν : H(div,Ω) → H− 1
2 (Γ̃), the normal

trace operator.

Theorem 2.1 ([15, Theorem A.8]). The normal trace operator γν : H(div,Ω) →
H− 1

2 (Γ̃) is a bounded, linear and surjective operator.

Both trace operators together give rise to the following integration by parts rule:

Theorem 2.2 (Integration by parts). For any F ∈ H(div,Ω) and g ∈ H̊1
Γ0
(Ω) there

holds:

⟨divF, g⟩L2(Ω) = ⟨F,∇g⟩L2(Ω)d + ⟨γνF, γ0g⟩
H− 1

2 (Γ̃),H̊
1
2 (Γ̃)

Proof. For F ∈ C∞(Ω)d we have for g ∈ H̊1
Γ0
(Ω):∫

Ω

⟨divF, g⟩C dλ =

∫
Ω

⟨F,∇g⟩Cd dλ+

∫
Γ̃

(ν · F )g dµ

Density of C∞
c (Ω)d in H(div,Ω) implies the claim. ❑
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The Friedrichs/Poincaré inequality (Theorem C.1) allows H1(Ω) to be equipped
with an equivalent inner product:

⟨f, g⟩H1(Ω) := ⟨∇f,∇g⟩L2(Ω) + ⟨k1γ0f, γ0g⟩L2(Γ̃). (5)

In particular we are interested in H̊1
Γ0
(Ω), which is a subset of H1(Ω). Note that (5)

gives still an equivalent norm on H̊1
Γ0
(Ω) if k1 = 0, under the condition that Γ0 ̸= ∅.

Hence, we either need
k1 ̸= 0 or Γ0 ̸= ∅.

2.3. Dissipative operators. We remind the reader of a few commonly known
facts about dissipative operators:

Definition 2.3. A linear operator A : H ⊇ domA → H on a Hilbert space H
is called dissipative, if Re⟨Ax, x⟩H ≤ 0 for all x ∈ domA. A is called maximally
dissipative if there is no proper dissipative extension of A.

Here are a few characterizations of maximally dissipative operators:

Proposition 2.4. Let A be a densely defined linear operator on a Hilbert space H.
The following are equivalent:

(i) A is maximally dissipative.

(ii) A is dissipative and ran(λI −A) is onto for some (and hence all) λ > 0.

(iii) A is closed and both A and A∗ are dissipative.

Proofs of these statements as well as the next theorem are contained in [9, Sec. II.3b].
We will rely on the following well-known theorem:

Theorem 2.5 (Lumer–Philips). Let A : H ⊇ domA → H be a densely defined linear
operator on a Hilbert space H. Then A is infinitesimal generator of a contraction
semigroup if and only if A is maximally dissipative.

2.4. Helmholtz decomposition. The classical Helmholtz decomposition allows
the splitting of a vector field into a gradient field and a divergence-free vector field.
We will also use a slight modification of the classical Helmholtz decomposition and
introduce

H̊1(Ω) := H̊1
∂Ω(Ω) = {f ∈ H1(Ω) | γ0f = 0}

H(div 0,Ω) := {v ∈ H(div,Ω) | div v = 0} = ker div .

With this preparation we can show the following modification of the classical result:

Theorem 2.6 (Helmholtz decomposition). Let T ∈ Lb(L
2(Ω)) be boundedly invert-

ible. Then
L2(Ω) = T∇H̊1(Ω)⊕T−1 H(div 0,Ω),

where ⊕T−1 denotes the orthogonal sum w.r.t. the inner product ⟨f, g⟩T−1 :=
⟨T−1f, g⟩.

Proof. The standard Helmholtz decomposition with T = id is simply an applica-
tion of the orthogonal decomposition of L2(Ω) into ranL and kerL∗, where L is

the densely defined linear operator ∇̊, i.e., the gradient with Dirichlet boundary
conditions (∇ restricted to H̊1(Ω) ⊆ L2(Ω)).
Hence, we only have to verify closedness of ranL. Let {un}n ⊆ ranL with un = Lvn
for some vn ∈ L2(Ω) converge to some u ∈ L2(Ω). Convergence of (un)n implies
boundedness of (Lvn)n in L2(Ω). Since ∥∇·∥L2(Ω) and ∥·∥H1(Ω) are equivalent on

H̊1(Ω) by virtue of the standard Poincaré inequality, this implies boundedness
of (vn)n as a sequence in H1(Ω). By Rellich’s theorem, there exists a strongly
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convergent subsequence of (vn)n in L2(Ω). Appealing to the closedness of L, we
obtain that u = limn→∞ un = limn→∞ Lvn = L limn→∞ vn, hence u ∈ ranL.
The T in front of the first orthogonal space and the T−1 attached in the first
component of the inner product corresponding to ⊕T−1 cancel out and give the
standard Helmholtz decomposition. ❑

2.5. Boundary triples. Boundary triples were originally developed for symmetric
operators see [12, 4], but they can be equivalently defined in the skew-symmetric
case, see [23] and [19, Ch. 2.4]. This is a simple consequence of multiplying the
equations by the imaginary unit i. We will present the version from [19] that allows
dual pairs as the boundary spaces instead of a single (identified) Hilbert space.
There is also the notion of m-boundary tuples [8], which additionally requires a
pivot space for the dual pair.

Definition 2.7. Let A0 be a densely defined, skew-symmetric and closed operator
on a Hilbert space H. A boundary triple for A∗

0 is a triple
(
(B+,B−), B1, B2

)
consisting of a complete dual pair7 (B+,B−) and two operators B1 : dom(A∗

0) → B+

and B2 : dom(A∗
0) → B− such that

(i) The map

B =

(
B1

B2

)
:

 dom(A∗
0) → B+ × B−,

x 7→
(
B1x
B2x

)
is onto.

(ii) The following abstract Green’s identity holds for all x, y ∈ dom(A∗
0):

⟨A∗
0x, y⟩X + ⟨x,A∗

0y⟩X = ⟨B1x,B2y⟩B+,B− + ⟨B2x,B1y⟩B−,B+
.

The abstract Green’s identity (ii) formalizes an integration by parts formula, which
is the reason for the designation boundary triple.
A boundary triple enables us to parameterize all boundary conditions such that A∗

0

restricted to all elements of domA∗
0, that satisfy the boundary condition, is maximally

dissipative. In our situation we will obtain a boundary triple that involves the trace
spaces H̊

1
2 (Γ) and H− 1

2 (Γ), but we would rather formulate boundary conditions in
the pivot space L2(Γ). Verifying dissipativity is usually straightforward, but the
maximality can be tricky. In the next section, we will arrive at a situation in which
((B−,B+), B1, B2) is a boundary triple8, where the duality of (B+,B−) is induced
by a pivot space B0. Moreover, B+ ⊆ B0 ⊆ B− forms a Gelfand triple. We want to
formulate Robin type boundary conditions of the form

B1x+ΘB2x = 0,

where Θ ∈ Lb(B0). So strictly speaking we have to take the embedding mappings
j+ : B+ → B0 and j− : B0 → B− into account, i.e.,

j−1
− B1x+Θj+B2x = 0

or equivalently

B1x = −j−Θj+B2x.

The corresponding operator is

AΘ := A∗
0

∣∣
domAΘ

,

domAΘ := {x ∈ domA∗
0 |B1x = −j−Θj+B2x}.

(6)

7Complete dual pair simply means that that the spaces are dual to each other, but we do not

identify them by means of the Riesz isomorphism in the case of a Hilbert space.
8The order of (B−,B+) is swapped on purpose, because later we will use (H− 1

2 (Γ̃), H̊
1
2 (Γ̃)).
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We denote the induced operator between B+ and B− by Θ̂, i.e.,

Θ̂ := −j−Θj+.

By the theory of boundary triples AΘ is maximally dissipative if and only if Θ̂ is
maximally dissipative, see, e.g., [19, Prop. 2.4.10] or [4, Cor. 2.1.4.].9

Proposition 2.8. Let (B+,B0,B−) be a Gelfand triple, ((B−,B+), B1, B2) be a
boundary triple for A∗

0 and Θ ∈ Lb(B0). Then AΘ is maximally dissipative, if Θ is
positive (semi-definite), i.e., ⟨Θh, h⟩B0 ≥ 0 for all h ∈ B0.

Proof. Note that AΘ is maximally dissipative, if Θ̂ := −j−Θj+ is maximally dissi-

pative. Hence, it is sufficient to show (the stronger assertion) that Θ̂ is self-adjoint
and negative.
Since j+ and j− are continuous embeddings we have Θ̂ ∈ Lb(B+,B−). Moreover,
j∗+ = j− and j∗− = j+.

10 This implies

Re⟨Θ̂x, x⟩B−,B+ = −Re⟨Θj+x, j+x⟩B0 ≤ 0.

Furthermore we have

Θ̂∗ = −(j−Θj+)
∗ = −j∗+Θ

∗j∗− = −(j−Θj+)
∗ = Θ̂,

which implies that Θ̂ is self-adjoint and therefore maximally dissipative. Hence,
also Θ̂−1 is maximally dissipative (in the sense of linear relations). Finally, we can
apply [19, Prop. 2.4.10], which deduces the maximal dissipativity of AΘ from the

maximal dissipativity of Θ̂−1 (Note that [19] uses a different notation. The operator
AΘ corresponds to AΘ̂−1 in the notation of [19]). ❑

3. Well-posedness

In [15] it was shown that there is a boundary triple associated to the wave equation
in the Dirac representation. In this section we show that we can also associate a
boundary triple to the wave equation in the Lagrange representation. This will
allow us to parameterize all maximally dissipative boundary conditions.
Recall the decomposition of ∂Ω into Γ0, Γ1, Γ2 Γ3 and Γ4. Since the case where Γ0

is equal to ∂Ω simply corresponds to the wave equation with Dirichlet boundary,
which is well-studied, we exclude that case. In particular, we will see, that the
boundary conditions (3) is one of these maximally dissipative boundary conditions.
For the following we only have to distinguish between Γ0 and the rest. Hence, let
us abbreviate Γ̃ := ∂Ω \ Γ0, which is essentially the same as Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

Reformulation. First we want to transfer the wave equation into the formalism
for boundary triples. As state space we choose

X := H̊1
Γ0
(Ω)× L2(Ω).

We use the equivalent norm for H1(Ω) given by the Poincaré inequality Theorem C.1
and define

⟨x, y⟩X :=
〈
1
ρx2, y2

〉
L2(Ω)

+ ⟨T∇x1,∇y1⟩L2(Ω) + ⟨k1γ0x1, γ0y1⟩L2(Γ̃).

Equivalence to the canonical inner product on X is assured by virtue of the Poincaré
inequality and the assumptions on ρ, T and k1. This is the energy inner product that
is favored in port-Hamiltonian formulations plus the inner product on the boundary,
which is necessary to prevent constant functions in the second argument to have
vanishing norm. We arrive (informally) at the differential operator A describing the

9In the second reference boundary triples are introduced for the symmetric setting.
10We regard the adjoint w.r.t. the dual pair (B+,B−), i.e., if A : B+ → H, then A∗ : H → B−

and analogously if B+ is the codomain. It is the reverse way around for B−.
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wave equation (1) by applying the classical substitutions x1 = ρ∂tw and x2 = w
and obtain:

∂t

(
x1

x2

)
=

(
0 I
−I 0

)(
− div T∇ 0

0 1
ρ

)
︸ ︷︷ ︸

=A

(
x1

x2

)
+

(
0 0
−a −b 1ρ

)(
x1

x2

)

Formally we define:

A : X ⊇ dom(A) → X,

(
x1

x2

)
7→

( 1
ρx2

div T∇x1

)
, (7)

where

domA :=

{(
x1

x2

)
∈ X

∣∣∣∣ 1
ρx2 ∈ H̊1

Γ0
(Ω) and T∇x1 ∈ H(div,Ω)

}
.

Lemma 3.1. A is a closed operator.

Proof. Let (( xn
yn ))n∈N be a sequence in domA that converges to ( xy ) ∈ X w.r.t.

∥·∥X such that also (A( xn
yn ))n∈N converges to ( v

w ) ∈ X w.r.t. ∥·∥X . Note that

A( xn
yn ) =

(
1
ρyn

div T∇xn

)
implies that 1

ρyn converges to v w.r.t. ∥·∥H1(Ω) and therefore

v = 1
ρy. Since xn converges to x w.r.t. ∥·∥H1(Ω) we conclude that T∇xn converges

to T∇x w.r.t. ∥·∥L2(Ω). Hence, the closedness of div implies w = div T∇x, which
shows the closedness of A. ❑

A is what we have called A∗
0 in Definition 2.7 for an (at this point still undefined)

operator A0.
11 As outlined in Section 2, we want to attach boundary conditions to

A by identifying a suitable boundary triple and then define AΘ. For our boundary
operators we define:

B1 :

{
domA → H− 1

2 (Γ̃),
x 7→ k1γ0x1 + γνT∇x1,

and B2 :

{
domA → H̊

1
2 (Γ̃),

x 7→ γ0
1
ρx2.

(8)

The ultimate goal of this section is to show that
((
H− 1

2 (Γ̃), H̊
1
2 (Γ̃)

)
, B1, B2

)
is a

boundary triple for A. From this, well-posedness of Equation (1) will easily follow.
According to Definition 2.7 we have to verify:

(i) B :=
(
B1

B2

)
is onto.

(ii) A and B satisfy an abstract Green identity.

To verify surjectivity of B it is enough to show that the individual B1 and B2 are
surjective, as they act on different components of x = ( x1

x2
). We first need a very

useful result about solutions of the (generalized) Dirichlet equation with boundary
condition provided by B1. The result is a slight modification of [22, Thm. 5.5]:

Proposition 3.2. For any g ∈ H− 1
2 (Γ̃) there exists w ∈ {f ∈ H̊1

Γ0
(Ω) |T∇f ∈

H(div,Ω)} such that

div T∇w = 0 in Ω,

γνT∇w + k1γ0w = g on Γ̃.

In particular, w = γ∗
0g is given by the adjoint

γ∗
0 : H

− 1
2 (Γ̃) → H̊1

Γ0
(Ω) of γ0 : H̊

1
Γ0
(Ω) → H̊

1
2 (Γ̃),

where H̊1
Γ0
(Ω) is equipped with

⟨f, g⟩∇,γ0
:= ⟨T∇f,∇g⟩L2(Ω) + ⟨k1γ0f, γ0g⟩L2(Γ̃).

11In fact, we will forego the definition of A0 entirely.
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Proof. Note that γ0 : H̊
1
Γ0
(Ω) → H̊

1
2 (Γ̃) is bounded. Thus, its adjoint is defined on

all of H− 1
2 (Γ̃) and is bounded. Moreover, γ∗

0g ∈ H̊1
Γ0
(Ω) as this is the range of γ∗

0 .

By definition of the adjoint we have for v ∈ H̊1
Γ0
(Ω)

⟨g, γ0v⟩∓ 1
2
= ⟨γ∗

0g, v⟩∇,γ0 = ⟨T∇γ∗
0g,∇v⟩L2(Ω) + ⟨k1γ0γ∗

0g, γ0v⟩L2(Γ̃).

If we choose v ∈ C∞
c (Ω) we obtain

0 = ⟨T∇γ∗
0g,∇v⟩L2(Ω),

which implies T∇γ∗
0g ∈ H(div,Ω) and div T∇γ∗

0g = 0. Hence, for arbitrary v ∈
H̊1

Γ0
(Ω) integration by parts gives

⟨g, γ0v⟩∓ 1
2
= ⟨γνT∇γ∗

0g, γ0v⟩∓ 1
2
+ ⟨k1γ0γ∗

0g, γ0v⟩∓ 1
2

= ⟨γνT∇γ∗
0g + k1γ0γ

∗
0g, γ0v⟩∓ 1

2
,

which in turn implies w = γ∗
0g, finishing the proof. ❑

Corollary 3.3. B is surjective.

Proof. Proposition 3.2 shows that B1 is surjective and B2 is surjective as a conse-
quence of the surjectivity of the Dirichlet trace operator. Since B1 and B2 act on
different components, we obtain the surjectivity of B. ❑

For the second step we observe that integration by parts for the Dirichlet and normal
trace operators (Theorem 2.2) gives rise to an abstract Green identity:

Proposition 3.4 (Green identity). For all x, y ∈ domA the following identity
holds:

⟨Ax, y⟩+ ⟨x,Ay⟩ = ⟨B1x,B2y⟩+ ⟨B2x,B1y⟩.

Proof. Let x, y ∈ dom(A). We can calculate:

⟨Ax, y⟩X + ⟨x,Ay⟩X

=

〈( 1
ρx2

div T∇x1

)
,

(
y1
y2

)〉
X

+

〈(
x1

x2

)
,

( 1
ρy2

div T∇y1

)〉
X

By the definition of the inner product in X we have

= ⟨ 1ρ div T∇x1, y2⟩L2(Ω) + ⟨T∇ 1
ρx2,∇y1⟩L2(Ω) + ⟨k1γ0 1

ρx2, γ0y1⟩L2(Γ̃)

+ ⟨x2,
1
ρ div T∇y1⟩L2(Ω) + ⟨∇x1, T∇ 1

ρy2⟩L2(Ω) + ⟨γ0x1, k1γ0
1
ρy2⟩L2(Γ̃)

Applying integration by parts on the div T∇ operators gives (we suppress the index
for the inner product in the following and just distinguish between inner products
and dual pairings)

= −⟨T∇x1,∇ 1
ρy2⟩+ ⟨γνT∇x1, γ0

1
ρy2⟩∓ 1

2
+ ⟨T∇ 1

ρx2,∇y1⟩+ ⟨k1γ0 1
ρx2, γ0y1⟩

− ⟨∇ 1
ρx2, T∇y1⟩+ ⟨γ0 1

ρx2, γνT∇y1⟩± 1
2
+ ⟨∇x1, T∇ 1

ρy2⟩+ ⟨γ0x1, k1γ0
1
ρy2⟩

This simplifies to

= ⟨γνT∇x1, γ0
1
ρy2⟩∓ 1

2
+ ⟨k1γ0 1

ρx2, γ0y1⟩

+ ⟨γ0 1
ρx2, γνT∇y1⟩± 1

2
+ ⟨γ0x1, k1γ0

1
ρy2⟩

= ⟨k1γ0x1 + γνT∇x1, γ0
1
ρy2⟩∓ 1

2
+ ⟨γ0 1

ρx2, k1γ0y1 + γνT∇y1⟩± 1
2

= ⟨B1x,B2y⟩∓ 1
2
+ ⟨B2x,B1y⟩± 1

2
❑
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To avoid having to define A0 (from Definition 2.7) itself and having to verify that
A∗

0 = A, we will simply prove A∗ ⊆ −A. This way, A0 := −A∗ has all necessary
properties of A0, i.e., skew-symmetry, dense domain and closedness.12

Proposition 3.5. A∗ ⊆ −A and A is densely defined

Note that the following proof must be formulated in the language of linear relations,
since we do not know a priori whether the adjoint of A is single-valued—which
is equivalent to A being densely defined. This has the useful side effect that the
density of A’s domain follows automatically.

Proof. Let (y, z) ∈ A∗ (where y = ( y1
y2 ) ∈ X and z = ( z1z2 ) ∈ X). Then we have for

x = ( x1
x2

) ∈ domA

⟨Ax, y⟩X = ⟨x, z⟩X
or equivalently

⟨ 1ρ div T∇x1, y2⟩L2(Ω) + ⟨T∇ 1
ρx2,∇y1⟩L2(Ω) + ⟨k1γ0 1

ρx2, γ0y1⟩L2(Γ̃)

= ⟨ 1ρx2, z2⟩L2(Ω) + ⟨T∇x1,∇z1⟩L2(Ω) + ⟨k1γ0x1, γ0z1⟩L2(Γ̃). (9)

Let x2 ∈ C∞
c (Ω). Then we choose x =

(
0

ρx2

)
, which is in domA, and obtain

⟨∇x2, T∇y1⟩L2(Ω) = ⟨x2, z2⟩L2(Ω).

This holds true for all x2 ∈ C∞
c (Ω), hence T∇y1 ∈ H(div,Ω) and z2 = −div T∇y1.

For arbitrary g ∈ H− 1
2 (Γ̃) we let x1 = γ∗

0g. Appealing to Proposition 3.2 we conclude
B1(

x1
0 ) = g and div T∇x1 = 0. This assures x = ( x1

0 ) ∈ domA, which allows us to
calculate

0 = ⟨ 1ρ div T∇x1︸ ︷︷ ︸
=0

, y2⟩L2(Ω)
(9)
= ⟨T∇x1,∇z1⟩L2(Ω) + ⟨k1γ0x1, γ0z1⟩L2(Γ̃)

= 0 + ⟨γνT∇x1, γ0z1⟩∓ 1
2
+ ⟨k1γ0x1, γ0z1⟩L2(Γ̃)

= ⟨g, γ0z1⟩∓ 1
2
.

Since g ∈ H− 1
2 (Γ̃) was arbitrary, we conclude γ0z1 = 0. Appealing to the

Helmholtz decomposition L2(Ω) = T∇H̊1(Ω) ⊕T−1 ker div from Theorem 2.6 we

know that ran(div T ∇̊) = ran(div) = L2(Ω). For x = ( x1
0 ) for arbitrary x1 ∈ {f ∈

H̊1(Ω) |T∇x1 ∈ H(div,Ω)} we have x ∈ domA and by (9)

⟨ 1ρ div T∇x1, y2⟩L2(Ω) = ⟨T∇x1,∇z1⟩L2(Ω) + 0 = −⟨div T∇x1, z1⟩L2(Ω).

Thus, surjectivity of div T ∇̊ implies z1 = − 1
ρy2, in particular 1

ρy2 ∈ H̊1
Γ0
(Ω) (because

z1 ∈ H̊1
Γ0
(Ω) by assumption).

Altogether we have shown y ∈ domA and z = −Ay, i.e., A∗ ⊆ −A
Note that A∗ is not multi-valued as A∗ ⊆ −A. This implies (domA)⊥ = {0}, cf.
[19, Lem. 2.2.8] or equivalently domA = X. ❑

With this, all initially outlined steps for verification of a boundary triple are in
place.

Theorem 3.6 (Boundary triple).
(
H− 1

2 (Γ̃), H̊
1
2 (Γ̃), B1, B2

)
is a boundary triple for

A.

Proof. By definition of a boundary triple, we have to check, that an abstract
Green identity holds (verified in Proposition 3.4) and that B is onto (verified in
Corollary 3.3). ❑

12Alternatively one can set A0 := −A with domA0 := kerB1 ∩ kerB2, cf. [19, Lem. 2.4.5].
However, this requires careful handling to avoid circular arguments.
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The remainder of this article heavily relies on exploiting Theorem 3.6. The first
step is verifying well-posedness of the initial problem (1).

Well-posedness of Equation (1). For this we simply have to specify the boundary
relation Θ from Equation (6). We set

Θ := k2 ∈ Lb(L
2(Γ̃)) (as an operator).

Then the collection of boundary conditions from (3) can be written as B1x+k2B2x =

0 on Γ̃. We use the notation Θ just to fit the usual parameter for boundary triples.
In particular

B1x+ k2B2x = 0 ⇐⇒ k1w + ν · T∇w + k2∂tw = 0.

If one replaces k1, k2 ∈ L(L2(Γ̃)) with suitable multiplication operators arising from
functions by the same name, the equation to the right contains the second to the
fifth condition of (3) in one line by taking into account that k1 and k2 may vanish

on certain parts of Γ̃. The condition w = 0 on Γ0 is already encoded in the domain
of the operator A and completes the set of equations from (3). Hence, the operator
that encodes all boundary conditions is AΘ defined by (6) (with A∗

0 = A from (7)
and Θ = k2), i.e.,

AΘ =

(
0 1

ρ

div T∇ 0

)
, domAΘ =

{(
x1

x2

)
∈ domA

∣∣∣∣B1x+ k2B2x = 0

}
.

Theorem 3.7. AΘ is generator of a strongly continuous semigroup of contractions.

Proof. By Theorem 3.6
(
(H− 1

2 (Γ̃), H̊
1
2 (Γ̃)), B1, B2

)
is a boundary triple for A. Hence,

Proposition 2.8 and the Lumer–Philips theorem (Theorem 2.5) imply the claim. ❑

Theorem 3.7 assures well-posedness of the wave equation without the perturbation
terms a and b. Note that we assumed the initial conditions be in the state space X
already in Section 1. For the full problem Equation (1) we define the perturbation

S : X → X,

(
x1

x2

)
7→

(
0

−ax1 − 1
ρbx2

)
for a, b ∈ L∞(Ω) we obtain a bounded linear operator. Then Equation (1) becomes

ẋ = (AΘ + S)x

and we have unique solvability appealing to standard perturbation theory (e.g., [9,
Thm. 1.3]). One can also allow more general a, b as long as S remains suitably
relatively AΘ bounded, cf. [9, Thm. 2.7] for a suitable perturbation result.

4. Stability

Under mild additional assumptions we are able to show stability of solutions. For
the purpose of this section, we will additionally assume that:

• Γ0 ̸= ∂Ω and that there exists Γ ⊆ ∂Ω \ Γ0 open and non-empty such that
k2 > 0 on Γ (i.e., there is an open set where the wave equation is damped).

• T and ρ are Lipschitz continuous multiplication operators.

Making use of the results of the previous section, we have to show stability properties
of the semigroup generated by AΘ. The notion of stabiliy we have in mind is the
following one:

Definition 4.1. A strongly continuous semigroup (T (t))t≥0 with generator G is
called semi-uniformly stable, if and only if there exists a continuous non-increasing
function f : [0,∞) → [0,∞) satisfying limt→∞ f(t) = 0 such that for every x ∈
domG:

lim
t→∞

∥T (t)x∥H ≤ f(t)∥x∥domG.



WELL-POSEDNESS AND STABILITY OF THE LAGRAGE REPRESENTATION 13

Remark 4.2. The notion of semi-uniform stability is nested in between strong
stability where

lim
t→∞

∥T (t)x∥H = 0

for all x ∈ H is demanded and uniform stability, where

lim
t→∞

∥T (t)∥ = 0

is demanded, which for strongly continuous semigroups is equivalent to uniform
exponential stability, i.e., there exists ϵ > 0 such that:

lim
t→∞

eϵt∥T (t)∥ = 0.

We rely on the following criterium from [2, Thm. 1.1]13.

Proposition 4.3. Let (T (t))t≥0 be a bounded strongly continuous semigroup with
generator G satisfying σ(G) ∩ iR = ∅. Then (T (t))t≥0 is semi-uniformly stable.

Proposition 4.3 outlines a roadmap we can follow with the goal of showing that AΘ

generates a semi-uniformly stable semigroup. We will verify:

(i) (T (t))t≥0 is bounded.

(ii) iλ−AΘ is boundedly invertible for λ ∈ R \ {0}.
(iii) AΘ is boundedly invertible.

The point (i) is clear, as Proposition 2.8 states that AΘ generates a contraction
semigroup, in particular the semigroup is bounded. For (ii) and (iii) we follow the
approach of [13]. We start by making the following observation:

Proposition 4.4. The embedding of domA into X is compact, i.e., domA
cpt
↪→ X.

Proof. Let (( xn
yn ))n∈N be a bounded sequence in domA w.r.t. the graph norm of A,

i.e., there exists a C > 0 independent of n ∈ N such that

∥( xn
yn )∥

2
domA

:= ∥( xn
yn )∥

2
X + ∥A( xn

yn )∥
2
X ≤ C.

By the definition of the norm in X we obtain∥∥ 1
ρyn

∥∥2
L2(Ω)

+
∥∥T 1

2∇xn

∥∥2
L2(Ω)

+
∥∥k 1

2
1 γ0xn

∥∥2
L2(Γ̃)

+
∥∥ 1
ρ div T∇xn

∥∥2
L2(Ω)

+
∥∥T 1

2∇ 1
ρyn

∥∥2
L2(Ω)

+
∥∥k 1

2
1 γ0

1
ρyn

∥∥2
L2(Γ̃)

≤ C.

This immediately implies that (xn)n∈N and ( 1ρyn)n∈N are bounded in H1(Ω).

We have to show that (xn)n∈N has a convergent subsequence in H̊1
Γ0
(Ω) and (yn)n∈N

has a convergent subsequence in L2(Ω).

• Since ( 1ρyn)n∈N is bounded in H1(Ω), there exists a subsequence that converges

in L2(Ω). Hence, (ρ 1
ρyn(k))k∈N converges in L2(Ω) as well.

• Again since (xn)n∈N is bounded in H1(Ω), there exists a subsequence that
converges to x in L2(Ω). W.l.o.g. we pass to that subsequence. To avoid the
introduction of several (irrelevant) multiplicative constants, we use the symbol
≲ which stands for inequality up to a multiplicative constant independent of n.
Note that appealing to the boundary condition we have

∥γνTxn∥L2(Γ̃) = ∥k1γ0xn + k2γ0
1
ρyn∥L2(Γ̃) ≲ C.

13The decay rate can be made explicit, cf. [6, Thm. 3.4] and its proof for details.
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Integration by parts and the Cauchy–Schwarz inequality give

∥∇(xn − xm)∥2L2(Ω)

≲
∥∥T 1

2∇(xn − xm)
∥∥2 =

〈
T∇(xn − xm),∇(xn − xm)

〉
Int. by parts

=
〈
− div T∇(xn − xm), xn − xm

〉
+ ⟨γνT (xn − xm), γ0(xn − xm)⟩

C.–S. ineq.

≲ C∥xn − xm∥L2(Ω) + C∥γ0(xn − xm)∥L2(Γ̃),

which shows that (∇xn)n∈N is a Cauchy sequence in L2(Ω) and hence convergent.
By the closedness of the operator ∇, we conclude that x is also the limit
of (xn)n∈N in H1(Ω). Finally, closedness of H̊1

Γ0
(Ω) in H1(Ω) implies x ∈

H̊1
Γ0
(Ω). ❑

This result has the consequence that we only have to investigate eigenvalues:

Theorem 4.5. σ(AΘ) consists purely of eigenvalues.

Proof. Let λ− AΘ be injective. By Proposition 4.4 all resolvent operators of AΘ

are compact. Hence, let µ be such that (µ−AΘ)
−1 is bijective and bounded (and

compact). Then:

λ−AΘ = (λ− µ) + (µ−AΘ)

(λ−AΘ)(µ−AΘ)
−1 = (λ− µ)(µ−AΘ)

−1 + 1

The right hand side is of the form 1 + K, where K is a compact operator. It
is a consequence of the theorem of Riesz-Schauder, cf. [24, Thm. 6.2.1], that an
operator 1 +K is injective if and only if it is surjective. Now note that the left
hand side is injective, since λ−AΘ is injective and the resolvent is bijective. Thus
λ−AΘ is surjective. The open mapping theorem assures that λ−AΘ is boundedly
invertible. ❑

Proposition 4.3 requires us to study the spectrum of AΘ on the imaginary axis.
Theorem 4.5 makes this considerably easier, as we only have to check for eigenvalues.
The following lemma gives us important information on the eigenvalues:

Lemma 4.6. If λ ∈ iR is an eigenvalue of AΘ, the corresponding eigenvectors x
satisfy

γνT∇x1 + k1γ0x1 = 0 and k2γ0
1
ρx2 = 0.

Proof. We can calculate for λ ∈ σ(AΘ) and x ∈ domAΘ a corresponding eigenvector

0 = Re
〈
(A− λ)x︸ ︷︷ ︸

=0

, x
〉
= Re⟨Ax, x⟩ − Reλ⟨x, x⟩
= 1

2 (⟨Ax, x⟩+ ⟨x,Ax⟩)− Reλ∥x∥2

= 1
2 (⟨B1x,B2x⟩∓ + ⟨B2x,B1x⟩±)− Reλ∥x∥2

= Re⟨B1x,B2x⟩∓ − Reλ∥x∥2

= Re⟨γνT∇x1 + k1γ0x1, γ0
1
ρx2⟩∓ − Reλ∥x∥2.

If λ ∈ iR, then we obtain

0 = Re⟨γνT∇x1 + k1γ0x1, γ0
1
ρx2⟩∓.

Appealing to the boundary condition and the fact that the duality can be written
as an inner product if the arguments are in L2 we infer

0 = Re⟨k2γ0 1
ρx2, γ0

1
ρx2⟩∓ = Re⟨k2γ0 1

ρx2, γ0
1
ρx2⟩ = ∥k

1
2
2 γ0

1
ρx2∥2,

which implies k2γ0
1
ρx2 = 0. Employing the boundary condition again we deduce

γνT∇x1 + k1γ0x1 = 0. ❑
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Note that the previous result says that γ0
1
ρx2 = 0 on supp k2, which by assumption

(A6) implies that there is a non-empty open set Γ contained in supp k2 such that
γ0

1
ρx2 = 0 on Γ.

To study purely imaginary eigenvalues, we need to investigate the equation (iλ−
AΘ)u = 0, which can be written as the system:

iλu1 − 1
ρu2 = 0 in H1(Ω)

iλu2 − div T∇u1 = 0 in L2(Ω).
(10)

We consider the cases λ ∈ R \ {0} and λ = 0.

Lemma 4.7. iλ−AΘ is boundedly invertible for λ ∈ R \ {0}.
Proof. Let λ ∈ R\{0} and let us assume that ( u1

u2
) is an eigenvector to the eigenvalue

λ. Then from Equation (10) we obtain that u1, u2 ∈ H1(Ω) and plugging the second
equation into the first we obtain that u1 ∈ H1(Ω) has to satisfy

λ2ρu1 + div T∇u1 = 0

Combining the first equation of (10) and Lemma 4.6 gives

γ0u1 = 0 and γνT∇u1 = 0 on supp k2.

Then the unique continuation principle14, cf. Appendix A, implies that u1 = 0 is
the only solution, which in turn implies u2 = 0 and therefore u = 0, which is a
contradiction. ❑

Lemma 4.8. AΘ is boundedly invertible.

Proof. Since domAΘ
cpt
↪→ X by Proposition 4.4 it suffices to show that 0 is not an

eigenvalue. Suppose 0 is an eigenvalue and x ∈ domAΘ a corresponding eigenvector.
Then from Equation (10) we immediately see x2 = 0. Moreover, by Lemma 4.6

γνT∇x1 + k1γ0x1 = 0.

We test the equation 0 = div T∇x1 with x1 and integrate by parts:

0 = ⟨div T∇x1, x1⟩ = −⟨T∇x1,∇x1⟩+ ⟨γνT∇x1, γ0x1⟩.
Utilizing the boundary condition γνT∇x1 + kγ0x1 = 0 we obtain〈

( x1
x2

), ( x1
x2

)
〉
X

=
〈
1
ρx2, x2

〉
L2(Ω)

+ ⟨T∇x1,∇x1⟩L2(Ω) + ⟨k1γ0x1, γ0x1⟩L2(Γ̃) = 0.

Thus x1 = 0 as well, but x = 0 is not an eigenvector. Hence, 0 cannot be an
eigenvalue. ❑

Finally, we arrive at the stability result.

Theorem 4.9. AΘ generates a semi-uniformly stable semigroup.

Proof. By Theorem 3.7 AΘ generates a contraction semigroup. Theorem 4.5 shows
that σ(AΘ) consists only of eigenvalues, Lemma 4.7 and Lemma 4.8 show that the
imaginary axis is contained in the resolvent set of AΘ. Proposition 4.3 then implies
the claim. ❑

Remark 4.10. We can also obtain semi-uniform stability of Equation (1) under
suitable assumptions on the perturbation

S : X ⊇ dom(S) → X,

(
x1

x2

)
7→

(
0

−ax1 − b 1ρx2

)
.

We see from Proposition 4.3 that it suffices for at least suitably AΘ-bounded S (to
assure that AΘ + S still generates a semigroup of contractions) that S be negative.

14It is here that our stronger assumptions from the beginning of the section come into play.
They are not required anywhere else!
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5. Conclusion

As far as well-posedness of Equation (1) is concerned, we succeeded by means of a
semigroup approach utilizing the theory of boundary triples; specifically, by con-
structing a boundary triple for the wave equation in the Lagrangian representation.
This framework allows us to formulate boundary conditions that involve the displace-
ment, its velocity and its normal stress. In particular we showed that the proposed
boundary conditions induce a maximally dissipative operator. Well-posedness of
Equation (1) is then a simple consequence of the Lumer–Philips theorem (and simple
perturbation theory).
For our results on stability we first point out, that the situation covered in this
article does not provide access to the tools usually employed in the verification of
stability of solutions, which in most instances means exponential stability. This is
because of the simple fact, that in our case, the damping happens on the boundary.
Because of that lack of stronger techniques, we cannot show exponential stability
and an application of the Gearhart–Prüss theorem seems out of reach, as we would
need to prove sufficient resolvent estimates. The notion of “semi-uniform stability”
presents a way out, with a convenient criterium (Proposition 4.3) requiring simple
spectral theory. From the fact, that the domain of our differential operator is
compactly embedded into the state space (Proposition 4.4) we immediately can
conclude that its spectrum is a pure point-spectrum, making the spectral condition
of Proposition 4.3 relatively easy to check. We point out, that the bottleneck for the
stability part is the application of a unique continuation theorem to prove that the
invariant system Equation (10) with zero boundary only admits the trivial solution.
Only in this instance do we require Lipschitz continuity of T and ρ.

Appendix A. Unique continuation

In this section we want to briefly explain how we apply the unique continuation
principle. In particular we use the version from [10]. To compare the notation we
have A = T , b = 0 and V = λ2ρ (left hand side of the equality sign is the notation
from [10]).
Let Ω ⊆ Rd be a bounded and connected Lipschitz domain, Γ ⊆ ∂Ω open (in ∂Ω)
and w ∈ H1(Ω) be a (weak) solution of

div T∇w + λ2ρw = 0 in Ω,

ν · T∇w = 0 on Γ,

w = 0 on Γ.

Then we define for every x ∈ Ω the set Ωx as in Figure 1, i.e., we choose a smooth
path from x to a point outside of Ω that crosses ∂Ω in (the interior of) Γ and
we define Ωx as a smooth neighborhood of this path that is sufficiently small.
Furthermore, we define

wx(ζ) :=

{
w(ζ), ζ ∈ Ω ∩ Ωx,

0, ζ ∈ Ωx \ Ω.

Note that we can extend T and ρ Lipschitz continuously and boundedly to all of Rd.15

By splitting the area of integration, using integration by parts and the boundary
conditions on Γ we can see that wx ∈ H1(Ωx) such that T∇wx ∈ H(div,Ωx). In
particular, this leads to wx solving

div T∇w + λ2ρw = 0 in Ωx.

15We can Lipschitz continuously extend T to a neigborhood of Ω and we then work with
αT + (1− α)I, where α is a cutoff function. This construction gives an extension that is globally
bounded. Analogously, we can extend ρ.
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x

Ωx

Ω

Γ

Figure 1. Deriving boundary unique continuation from strong
unique continuation.

We aim to apply the unique continuation principle [10, Thm. 1.1] to conclude that
wx is zero. Note that the assumptions of [10, Thm. 1.1] are easy to check for our
setting as b = 0 and V = λ2ρ is bounded. Hence, wx = 0 and consequently also
w = 0.

Appendix B. Regularity

Note that for general (non-Lipschitz continuous) T the C∞ functions are not
necessarily dense in the domain of div T∇, as they may not even lie in the domain.
Hence, arguments that rely on smooth functions in the domain of div T∇ and extend
these properties by density require an alternative dense set of regular functions. In a
previous version we relied on such arguments, but we could find more direct methods.
Nevertheless, we aim to identify such a set of “regular” functions that is dense
for potential future applications. In particular we are concerned with boundary
regularity—specifically, the existence of a meaningful L2(∂Ω) normal trace for T∇w.
We therefore define the following spaces

H̊(div 0,Ω) := {u ∈ H(div,Ω) | div u = 0, γνu = 0}

Ĥ(div,Ω) := {u ∈ H(div,Ω) | γνu ∈ L2(∂Ω)}.

We will disregard the additional boundary condition on Γ0 imposed by H̊1
Γ0
(Ω) (i.e.,

we regard Γ0 = ∅) as it actually simplifies the argument rather than complicating it,
because in this space ∥∇·∥L2(Ω) is equivalent to the full H1(Ω) norm. The only part
that needs more attention in that case is the Helmholtz decomposition, but this is
covered by [3, Thm. 5.3].

Theorem B.1. The set D1 := {f ∈ H1(Ω) |T∇f ∈ Ĥ(div,Ω)} is a core of L =
div T∇ (with domL = {f ∈ H1(Ω) |T∇f ∈ H(div,Ω)} as operator on L2(Ω)).

Proof. Let f ∈ domL. Note that Ĥ(div,Ω) is dense in H(div,Ω) w.r.t. ∥·∥H(div,Ω).

Hence, for given ϵ > 0 there exists a g ∈ Ĥ(div,Ω) such that ∥T∇f − g∥H(div,Ω) ≤ ϵ.

Moreover, similar to Theorem 2.6, by replacing ∇̊, the gradient with Dirichlet
boundary, with ∇, as in the proof there we can decompose L2(Ω) into

L2(Ω) = T∇H1(Ω)⊕T−1 H̊(div 0,Ω),

where a ⊥T−1 b means ⟨T−1a, b⟩L2(Ω) = 0. Hence, there exist h ∈ H1(Ω) and

k ∈ H̊(div 0,Ω) such that g = T∇h + k. Since g, k ∈ Ĥ(div,Ω) we conclude that

also T∇h ∈ Ĥ(div,Ω). Moreover,

γνg = γνT∇h+ γνk︸︷︷︸
=0

= γνT∇h
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and
div g = div T∇h+ div k︸ ︷︷ ︸

=0

= div T∇h.

This gives ∥div T∇(f − h)∥L2(Ω) = ∥div T∇f − g∥L2(Ω) ≤ ϵ. Clearly, we also have
∥T∇f − g∥L2(Ω) ≤ ϵ. Moreover, by orthogonality we obtain

ϵ2 ≥ ∥T∇f − T∇h− k∥2L2(Ω) ≥
1

∥T 1
2 ∥2

∥T∇(f − h)− k∥2T−1

=
1

∥T 1
2 ∥2

(
∥T∇(f − h)∥2T−1 + ∥k∥2T−1

)
,

which implies ∥T∇(f − h)∥T−1 ≤ ∥T− 1
2 ∥ϵ and consequently ∥T∇(f − h)∥L2(Ω) ≤

∥T 1
2 ∥∥T− 1

2 ∥ϵ. Hence, we have

∥T∇(f − h)∥H(div,Ω) ≤ (1 + ∥T 1
2 ∥∥T− 1

2 ∥)ϵ.
Moreover, we have the decomposition

H1(Ω) = C⊥ ⊕ C
and that ∇ : C⊥ → ran∇ is a boundedly invertible mapping, where ran∇ is endowed
with ∥·∥L2(Ω). Note that f and h can be decomposed according to this decomposition

into f = f1 + f2 and h = h1 + h2, where f1, h1 ∈ C⊥ and f2, h2 ∈ C. Since T is also
boundedly invertible we obtain

∥f1 − h1∥L2(Ω) = ∥∇−1T−1T∇(f − h)∥L2(Ω) ≤ C∥T 1
2 ∥∥T− 1

2 ∥ϵ.

Hence, we define ϕ = h1 + f2 ∈ H1(Ω), which implies ∇ϕ = ∇h and in particular
ϕ ∈ D1. This gives

∥f − ϕ∥domL =
√

∥f − ϕ∥2L2(Ω) + ∥div T∇(f − ϕ)∥2L2(Ω)

=
√
∥f1 − h1∥2L2(Ω) + ∥div T∇(f − h)∥2L2(Ω) ≤ C̃ϵ

for a constant C > 0. Note that by construction ϕ ∈ D1 and ∥f − ϕ∥domL ≤ Ĉϵ,
which proves that D1 is a core of L. ❑

Consequently for A =
(

0
1
ρ

div T∇ 0

)
with Γ0 = ∅ from Section 3 we obtain:

Corollary B.2. The set

D :=
{
( x1
x2

) ∈ dom(A)
∣∣ γνT∇x1 ∈ L2(∂Ω)

}
= D1 × ρH1(Ω)

is a core of A.

Remark B.3. Note the general statement with non-empty Γ0 can be obtained
relatively similar. The only difference is that in the proof of Theorem B.1 we need
the corresponding Helmholtz decomposition

L2(Ω) = T∇H̊1
Γ0
(Ω)⊕T−1 H̊∂Ω\Γ0

(div 0,Ω),

see, e.g., [3, Thm. 5.3].

Appendix C. Friedrichs/Poincaré inequality

We use a slightly modified version of Friedrichs/Poincaré’s inequality.

Theorem C.1. Let Ω be a bounded and connected Lipschitz domain, Γ ⊆ ∂Ω with
positive measure and k1 ∈ Lb(L

2(Γ)) such that 1 /∈ ker k1. Then there exists a C > 0
such that for all f ∈ H1(Ω)

∥f∥L2(Ω) ≤ C
(
∥∇f∥L2(Ω) +

∥∥k 1
2
1 γ0f

∥∥
L2(Γ)

)
.
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Proof. Assume that there is no such C > 0. Then we find a sequence (fn)n∈N in
H1(Ω) such that

∥fn∥L2(Ω) > n
(
∥∇fn∥L2(Ω) +

∥∥k 1
2
1 γ0fn

∥∥
L2(Γ)

)
.

We define gn := fn
∥fn∥L2(Ω)

, which implies

∥gn∥L2(Ω) = 1, ∥∇gn∥L2(Ω) → 0 and ∥k
1
2
1 γ0gn∥L2(Γ) → 0.

By the Rellich–Kondrachov theorem and passing over to a subsequence the sequence
(gn)n∈N converges to a g ∈ L2(Ω) (w.r.t. ∥·∥L2(Ω)). For ϕ ∈ C∞

c (Ω) we have

⟨div ϕ, g⟩L2(Ω) = lim
n→∞

⟨div ϕ, gn⟩L2(Ω) = lim
n→∞

−⟨ϕ,∇gn⟩L2(Ω) = 0,

which implies that g ∈ H1(Ω) and ∇g = 0. Consequently, g is constant, i.e., there
exists a c ∈ C such that g = c. Moreover, the sequence (gn)n∈N converges also w.r.t.
∥·∥H1(Ω) to g. This gives

k1c = k1γ0g = lim
n→∞

k
1
2
1 k

1
2
1 γ0gn = 0

and from the assumption on k1 we conclude c = 0, which contradicts ∥g∥L2(Ω) =
1. ❑
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