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ABSTRACT. We consider a port-Hamiltonian system on an open spatial domain
Q) C R™ with bounded Lipschitz boundary. We show that there is a boundary
triple associated to this system. Hence, we can characterize all boundary condi-
tions that provide unique solutions that are non-increasing in the Hamiltonian.
As a by-product we develop the theory of quasi Gelfand triples. Adding “natu-
ral” boundary controls and boundary observations yields scattering/impedance
passive boundary control systems. This framework will be applied to the wave
equation, Maxwell’s equations and Mindlin plate model. Probably, there are
even more applications.

1. Introduction. The aim of this paper is to develop a port-Hamiltonian frame-
work on multidimensional spatial domains that justifies existence and uniqueness
of solutions. Those systems can be described by the following equations

7.0 =30 G P(HOn(t.0) + A(HQ(t.0), ez,
IL’(O, C) - xO(()a C € Qa

where x is the state, P; and Py are matrices, H is the Hamiltonian density, and
Q is an open subset of R™ with bounded Lipschitz boundary. We will restrict
ourselves to the case, where the matrices P; have the block shape { LOH LO} for i €
{1,...,n}. We also introduce “natural” boundary controls and observations which
make the system a scattering passive (energy preserving) or impedance passive
(energy preserving) boundary control system. This PDE perfectly matches the
description of port-Hamiltonian systems in one spatial dimension in [8], if we set

n = 1. The additional restriction P; = [ LO;‘ Lol} is not needed in [8], since the
boundary of a line automatically satisfies certain symmetry properties. We decided

to not demand an analogous symmetry from (2 in the multidimensional case, because
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0 L;
o
this anyway. However, it is probably possible to drop this restriction and ask instead
for certain a symmetry of the boundary.

The port-Hamiltonian formulation has proven to be a powerful tool for the mod-
eling and control of complex multiphysics systems. An introductory overview can
be found in [14]. For one-dimensional spatial domains concerns about existence and
uniqueness of solutions are covered in [8].

Chapter 8 of the Ph.D. thesis [15] also regards such port-Hamiltonian systems
that have multidimensional spatial domains, but the results demand very strong
assumptions on the boundary operators (they have to map into H'Y*(9Q)* and
its dual respectively), which are in case of Maxwell’s equations and the Mindlin
plate model not satisfied, as Example A.4 shows for Maxwell’s equations. With the
following approach we will overcome these limits.

The strategy is to find a boundary triple associated to the differential operator.
The multidimensional integration by parts formula already suggests possible opera-
tors for a boundary triple, but unfortunately these operators cannot be extended to
the entire domain of the differential operator. Hence, we need to adapt the codomain
of these boundary operators, which will lead to the construction of suitable bound-
ary spaces for this problem. These boundary spaces behave like a Gelfand triple
with the original codomain as pivot space, but lack of a chain inclusion.

Up to the author’s best knowledge there is no earlier theory about this setting.
So we will develop the notion of quasi Gelfand triples in section 5, which equips us
with the tools to state the boundary condition in terms of the pivot space instead of
the artificially constructed boundary spaces (Theorem 7.6). Section 5 can be read
isolated from the rest.

One can think of using a quasi boundary triple (G,To,T'1) (see [1]) to overcome
the extension problem of the boundary mappings, but unfortunately the condition
ker Ty is self-adjoint (or in this setting skew-adjoint) is in general not satisfied for
our purpose.

The approach to the wave equation in [9] perfectly fits the framework presented
in this paper. In fact, many ideas from [9] are generalized in this work. Also
Maxwell’s equations can be formulated as such a port-Hamiltonian system and the
results in [16] can also be derived with the tools of this paper. Moreover, this theory
can be applied on the model of the Mindlin plate in [2, 10]. In section 8 we give
examples of how this framework can be applied to these three PDEs.

it did not seem very restrictive to ask for P, = [ } as all the examples satisfy

Symbols.
SYMBOL MEANING PAGE
B,.(o) {¢ € X :||¢ —llx < r} ball with radius r and center ¢y in
a normed space X
D(Q) set of C*°(€2) functions with compact support 969
D'(Q) (anti)dual space of D(Q) 969
D(R")|, {flg:f € DR} 969
v outward pointing normed normal vector on 02 969
Yo HY(Q, X) — L?(09, X); extension of f f|89 969

Ls S, 0;L; a differential operator from L?(2)™2 to L*(Q)™ 969
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LY S oLt 969
H(Ly, ) {f e L2(Q)™ : Lyf € L*(Q)™ } maximal domain of Ly 969
Hy(Lsp,2)  The closure of D(Q)™2 in H(Ly, ) 969
Hr, (LY, Q) ker7l° 989
L, S vl L2(0)™2 — L2(9Q)™ 969
Lr H(Lp, ) — Vi r; extension of IrL,vo on H(Lp,2) 989
L, LI%: H(Lp, Q) — V} ; extension of L,y on H(Ly, Q) 990
[2(0)  tanIrL C LA(T)™ 037
r H(Q)™ — L2(T'); projection on L2(T") composed with 7o 987
L 7 HY Q)™ — L2(0Q)™ 987
7t H(LY, Q) — Vi, r; extension of 7L on H(L}, Q) 988
L 700 H(LH, Q) — Vr 988
My ranr C L2(T) 988
\Z A ranmry, ‘HFO(LH7Q) 989
Vi Vr.00 989
H Hamiltonian density 976
Xy L2(Q2)™ equipped with (H., Jr2()m; the state space 976
[((?;L{x; )LLH] splitting of Ha w.r.t. the dimensions of L 992
Xo Hilbert space; pivot space of a quasi Gelfand triple 977
ﬁ+ dense subspace of Xy with an alternative inner product 977
D_ {g € Xo :sup,e 1 (o) %ﬁi' < +oo} 978

2. Boundary triple. In this section we state the most important properties of
boundary triples for skew-symmetric operators for this work. More details can be
found in [6, chapter 3] and [9].

A linear relation T from a vector space X to a vector space Y is a linear subspace
of X xXY. Clearly, every linear operator is also a linear relation (we do not distinguish
between a function and its graph). We will use the following notation

kerT :={zr e X :(x,0) €T}, ranT ={yeY:3x: (x,y) €T},

mul?7 ={yeY:(0,y) €T}, domT :={xe X :3y: (x,y) €T}
Thus, T is single-valued, if mul7 = {0}. The closure T of a linear relation 7 is the
closure in X x Y. Note that every linear relation is closable. Also every operator
has a closure as a linear relation, but its closure can be multi-valued. Therefore,

showing mulT = {0} is necessary, even if mul7 = {0}. For an additional linear
relation S from Y to another vector space Z we define the composition ST as

ST :={(x,2) € X X Z : Jy € Y such that (z,y) € T and (y,z) € S}.

For a linear relation T from a Hilbert space X to a Hilbert space Y the adjoint
relation is defined by

T = {(u,v) €Y x X : (u,y)y = (v,z)x for all (x,y) € T}
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and the following holds true
kerT* = (ranT)*, mulT* = (domT)* and T* = [—(I)x I(‘)/] T+,

where [flJX 15’] T = {(y,—z) : (v,y) € T} and T+ is the orthogonal complement

in X xY. A linear relation T on a Hilbert space H (from H to H) is dissipative, if
Re(x,y)y < 0 for every (z,y) € T and mazimal dissipative, if additionally there is
no proper dissipative extension of T'. The linear relation T is (mazimal) accretive,
if —T = {(z,—y) : (z,y) € T} is (maximal) dissipative. More details can be found
in [4].

Definition 2.1. Let Ay be a densely defined, skew-symmetric, and closed operator
on a Hilbert space X. By a boundary triple for A} we mean a triple (B, By, B2)
consisting of a Hilbert space B, and two linear operators By, By: dom Aj — B such
that

Bix

(i) the mapping [g;] : domAf — Bx B,z — [Bﬂ] is surjective, and
(ii) for x,y € dom A there holds

<A31‘7y>x + <$,A3y>X = <le732y>3 + <B2valy>B' (21)

The operator Ag can be recovered by restricting —Agj to ker By N ker By as the
next lemma will show. However, if A} satisfied item (i) and item (ii) but wasn’t
the adjoint of a skew-symmetric operator, then the next lemma would not hold
as Example A.1 demonstrates. Consequently, Proposition 2.3 would also not hold.
This should highlight the importance of Aj being the adjoint of a skew-symmetric
operator in the definition of a boundary triple.

Lemma 2.2. Let Ay be a densely defined, skew-symmetric, and closed operator
on a Hilbert space X and (B,Bi1,Bs) be a boundary triple for Af. Then Ay =

*

_AO

ker ByNker By *

A proof can be found in [6, p. 155]. The following result is Theorem 2.2 from [9].

Proposition 2.3. Let Ay be a skew-symmetric operator and (B, By, Ba) be a bound-
ary triple for Aj. Consider the restriction A of Aj to a subspace D containing

ker By Nker By. Define a subspace of B x B by C = {gl} D. Then the following
2

claims are true:

(i) The domain of A can be written as
* Bl
domA =D =qd e domAj: deC;.
By
(ii) The operator closure of A is A§ restricted to
Di={dedomay: |2aee
= omAg : | p )

where C is the closure in B2. Therefore, A is closed if and only if C is closed.
(iii) The adjoint A* is the restriction of —A§ to D', where

/. ! * Bl U 0 I 1
o (i camay: [ e [0 e
————

=—c*
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(iv) The operator A is (maximal) dissipative if and only if C is a (mazimal) dissi-
pative relation. It also holds that A is (mazimal) accretive, if and only if C is
(mazximal) accretive.

3. Differential operators. Before we start analyzing port-Hamiltonian systems
we will make some observation about the differential operators that will appear in
the PDE. In this section we take care of all the technical details of these differential
operators. Since it doesn’t really make a difference whether we use the scalar field
R or C we will use K € {R,C} for the scalar field. The following assumption will
be made for the rest of this work.

Assumption 3.1. Let mi,mo,n € N, Q@ C R™ be open with a bounded Lip-
schitz boundary, and L = (L;)?_; such that L, € K™ *™2 for all i € {1,...,n}.
Corresponding to L we also have LH := (L™  where L denotes the complex
conjugated transposed (Hermitian transposed) matrix.

We will write D(Q2) for the set of all C>°(Q) functions with compact support in
Q. Tts dual space, the space of distributions, will be denoted by D’(Q2) (details on
distributions can be found in [7]). Moreover, we will write D(R”)|Q for {f|Q 1 fe
D(R™)}. We will use 0; as a short notation for B%L We denote the boundary trace
operator by yo: HY(Q, X) — L?(99, X) for a Banach space X.

Sometimes it can be confusing to pay attention to the antilinear structure of an
inner product of a Hilbert space, when switching between the inner product and the
dual pairing. Thus, for the sake of clarity we will always consider the antidual space
instead of the dual space, which is the space of all continuous antilinear mappings
from the topological vector space into its scalar field. Hence, both the inner product
and the (anti)dual pairing is linear in one component and antilinear in the other.
So also D'(Q) is actually the antidual space of D(Q).

Sometimes we will write (1, ¢)pr p instead of (1, §)pr(ayr piyr, if Q@ and k € N
are clear or (¥, ¢)p/(q),p(), if only k € N is clear.

Definition 3.2. Let L be as in Assumption 3.1. Then we define
La = Z&Ll and Lg = (LH)Q = Z 81Lr|
i=1 i=1

as operators from D'(Q)™2 to D'(2)™* and from D’'(2)™* to D’'(2)™=2, respectively.
Furthermore, we define the space
H(Lp,Q) = {f € L*(QK™) : Ly f € L*(L,K™)}.
This space is endowed with the inner product
(fs 9 H(Lo,0) = ([, 9) L2(0.km2) + (Lo f, Log) 2 (0,km1)-
Fyrayvey Iz (e

The space Hy(Lp, ?) is defined as D(2)™2 . We denote the outward pointing
normed normal vector on 0f2 by v and its i-th component by v;. Moreover, we define

N~ [ LPOUK™) o L0,
I, ,_Z;ViLi. { = Yl vuLif,

and L}! == (I1),.
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The operator Ly can also be regarded as a linear unbounded operator from
L2(,K™2) to L*(Q,K™) with domain H(Ly,Q). In fact this is what we will
do most of the time. The same goes for LY with domain H(L!!, Q). Since v €
L= (99, R™) the mappings L, and L} are well-defined and bounded.

For convenience we will write H'(Q2)¥ instead of H'(Q, K*) and L?(Q)* instead
of L?(9,KF) for k € N.

Clearly, D(R™)™|, € H' ()™ C H(Ly, Q) and D(R")™ |, € H Q)™ C
H(LY, Q).

Example 3.3. Let us regard the following matrices
Ly=[1 0 0], Ly=[0 1 0], and Ly=[0 0 1].
Then we obtain the corresponding differential operators

e
Ly = [81 O 83] =div and Lg: Oy | = grad.
(23]
The corresponding operator L, that acts on L?(9f2) can be written as an inner
product
fi
L f= [Vl V2 V3] fal =v-f.
f3

Clearly the previous example can be extended to any finite dimension.

Example 3.4. The following matrices will construct the rotation operator.

0 0 O 0 0 1 0 -1 0
Liy=10 0 -1, Ly=|0 O 0|, and Ls3=1(1 0 O
01 0 -1 0 0 0 0 O
In this example we have Li-" = —L;. Furthermore, the corresponding differential
operator is
0 —03 09
Lo= |93 0 =0 =rot=—-L}.
-0y O1 0

The corresponding operator I, that acts on L?(9Q) can be written as a cross
product

0 —-uv3 1 J1
Ll,f = Vs 0 —U1 f2 =V X f
—v2 0 I3

Lemma 3.5. The operator Ly with dom Ly = H(Ly,Y) is a closed operator from
L2(Q)™2 to L*()™ and H(Ly, Q) endowed with the inner product (.,.)u(r,.0) is a
Hilbert space.

Note that for f € D'(2)"2 and ¢ € D(2)™ we have

n

(Lo.f, &) pr(ym1 D(ym1 = Z<aiLif» ®) D (Q)m1 ()™
=1

= Z<f, —80; L9 pr (yme p(yme = (f, =L &) pr(@)ma p(eyma -
=1
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Proof. Let ((fk7L3fk))keN be a sequence in Ly that converges to a point (f,g) €
L2(Q)™2 x L?(2)™ . For an arbitrary ¢ € D(2)™ we have

(9, &) ()m1,D(Q)m1 = (Lo fr, ) (0ym1 p()ym

lim
k—oo

kﬂ%(fm — L5 $)prymi peym
= (f, =Ly d)pr (ym2 D)2
= (Lo f, ) pr(ym1 D)™ 5
which implies g = Lpf. Since g is also in L%(£2)™, we conclude that Ly is closed.
Hence, dom Ly = H(Lp,?) endowed with the graph norm of Ly, which is induced

by (.,.)H(Ls,0), is a Hilbert space. Qa
Lemma 3.6. The adjoint of Ly with dom Ly = H(Ly,$2) (as an unbounded op-
erator/linear relation from L*(Q)™2 to L2(Q)™) is given by Lig = —L}g for

g€ dom L} C H(LY, Q), i.e. Ly C —LY.
Proof. For an arbitrary g € dom L} and an arbitrary ¢ € D(2)™2 we have
(Lg, )10 = (L39, )12 = (9, Lod) 12 = (9, Log) > = (—L})'g, ¢)pr -

Therefore, L;g = —L}'g and L}g € L*(Q)™2 implies Li'g € L?(Q2)™2. Consequently,
dom L} C H(LY, Q). a

Remark 3.7. If L contains only Hermitian matrices (L' = L;), then L} = Ly and

3
L; is skew-symmetric by the previous lemma.

The next result is an integration by parts version for Ly. This will be helpful
to construct a boundary triple for the differential operator in the port-Hamiltonian
PDE.

Lemma 3.8. Let f € HY(Q)™2 and g € H(Q2)™ . Then we have
(Lo f, )2y + (f, LY g) 12(yme = (Lo f,709) L2 (90) ™
= (nf, Lz|;|709>L2(8Q)7"2 .

Proof. Let f € D(R”)m?|Q and g € D(R™")™ ’Q. By the definition of Ly and L},
and the linearity of the scalar product we can write the left-hand-side of (3.1) as

(3.1)

/ D (0iLif,9) + (f, 0L g) dA = / > (OiLif,g) + (Lif, dig) dA,
2 =1 Qi

where A denotes the Lebesgue measure. By the product rule for derivatives and
Gaufl’s theorem (divergence theorem) (see [7, eq. (3.1.6)] or [13, Remark 13.7.2])
this is equal to

/Q;@KLJ,Q)(JU\:/(?Q;VzW’O(LZf,g)d/i2/89<Lu70f7’709>d,l£7

where v denotes the outward pointing normed normal vector on 952 and p denotes
the surface measure of 9. By density we can extend this equality for f € H(Q)™2
and g € H*(Q2)™. a

Corollary 3.9. Let f € HY(Q)™2 and g € H ()™ . Then we have

(Luyofsv09) L2y | < 1 fllars.) 19l ay o)
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Proof. Lemma 3.8, the triangular inequality and Cauchy Schwarz’s inequality yield

(Lo fv09) 1200y | < [{Lof, g)r2ym | + [(f, L5 9) L2 (ayme |
< Lo fllz2@ym lgllz2@yms + I1f 1122 @yma 125 9]l L2 (yme
< \Zof 1 + 171324/ I912: + I L8911

= 1/ llerczo, 9 19 Erczs 0)- Q

Note that Q = R"™ satisfies the assumptions in Assumption 3.1. Hence, all the
previous results hold true for 2 = R".

Our next goal is to show that D(R™)™2 ’Q is dense in H(Ly, ); see Theorem 3.18.
In order to archive this we will present some regularization and continuity results.
In particular the density is needed to extend the integration by parts formula
(Lemma 3.8) for f € H(Ly,Q) and g € H(LY, Q).

Lemma 3.10. The mapping ¢: H(Ly, R"™) — H(Lp, ), f — f’Q s well-defined and
continuous for any open set Q C R™. In particular, La(f’Q) = (Laf)‘ﬂ. Moreover,
if f = fin H(Ly,R"™), then fi — [ in H(Ly, ).

Hence, we can alwalfs regard an f € H(Ly,R™) as an element of H(Ly, (), espe-
cially when supp f C Q — then it is also possible to recover f from f |Q

Proof. If f € H(Lp,R™), then f € L?(R")™ and Lpf € L*(R™)™. Hence, it is
easy to see that [|f|,[z2() < [Ifllz2@n) and [[(Lof)|qllz2(@) < [[Lofllz2(gn)- Note
that D(Q) € D(R™), and that for g € L?(R") and ¢ € D(Q)

<97¢>D'(Rn),D(Rn) = <9v¢>L2(]R") = <g}ﬂ’¢>L2(Q) = <g Q’¢>D/(Q)7'D(Q)'

Hence, for f € H(Lp,R™) and ¢ € D(Q) we have
= <L8f7 ¢>D/(Rn)’D(Rn)
= <(Laf)|ga¢>p/(g),z>(ﬂ)’

which implies La(f|Q) = (Lo f) |Q in D’(2). Since the latter is in L?({2), we conclude
f}Q € H(Lp, ). Consequently, ¢ is well-defined and ||¢f||f(z,.0) < IfIlf(zsm7) DY
the norm estimates from the beginning. Since ¢ is linear this implies the continuity
of ¢ and in turn the last assertion of the lemma. a

H H
o Lo ¢>D’(Q),’D(Q) = (/s =Lp ¢) (&) D)

Lemma 3.11. Let D,: L*(R™)* — L?>(R™)* be the mapping defined by (D, f)(¢) =
f(n¢), where n € (0,+00) and k € N. Then D,, converges in the strong operator
topology to 1 for n — 1.

Proof. For ¢ € D(R")* we will show that n — D,¢ from (0,+oc) to L2(R™)* is
continuous:

1Dy, ¢ = Dy l7 = /Rnllcb(mC) — ¢(120) [lier AA(C)
1

2
B(2¢) = 9(Q)|, M) =0 for 7o —m
2 K

2n
N2 Jre
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by Lebesgue’s dominated convergence theorem, where A denotes the Lebesgue mea-
sure. For f € L?(R™)* there exists a sequence (¢, )men of D(R™)® functions that
converges to f (w.r.t. ||.|[z2). Hence,

1
1Dy — Dy fll2 = 777||¢>m — flle

and D, ¢, converges uniformly in n € (¢,4+00),e > 0 to D, f for m — oco. Con-
sequently 7 +— D, f is also continuous from (e, +oc0) to L*(2)* and in particular
D,f — fforn—1. a

Definition 3.12. A set O C R" is strongly star-shaped with respect to (g, if for
every ¢ € O the half-open line segment {8(C — (o) +Co : @ € [0,1)} is contained in O.
We call O strongly star-shaped, if there is a (o such that O is strongly star-shaped
with respect to (p.

Note that this is equivalent to
0(6— )+ CO forall 6€]0,1).

Lemma 3.13. Let f € H(Ly,R™) and (o € R™. Furthermore, let fp(¢) == f(%(( —
Co) + €o) for 8 € (0,1) and a.e. ¢ € R™. Then fy € H(Ly,R™) and fo — f in
H(Ly,R™) as 0 — 1. If there exists a strongly star-shaped set O with respect to the
previous (o such that supp f C O, then supp fo € O for 6 € (0,1).

Proof. Let f € H(Lp,R") and a(¢) == (¢ — (o) 4+ ¢o- Then it is easy to see that
fo=foaand fy € L*(R")™2. By change of variables we have

(Lo (f © @), o)pr @y, pmn) = (f, —(L5'¢) 0 a™10™) L2 @y
= (r-yta(oen 30
{

Ly <5¢Oa71)9n>m(w> N <$(L3f) ° a’¢>L2(R“>

<%(Laf) ’¢>D/(Rn)7D(Rn)'

Therefore, Lyfs = %(Laf)a and fy € H(Lyp,R™). We can also write fy as
Te,D1T—¢, f, where Tg: L?(R™")™2 — L2(R™)™2 is the translation mapping f
f(.+&) and D, L2(R™)™2 — L?(R™)™2 is the mapping from Lemma 3.11. Since
T¢ is bounded and D,, converges strongly to I as n — 1, we conclude fs — f in
L2(R™)™2 as 0 — 1 and Lo fy = §(Lof)e — Lof in L*(R™)™ as 6§ — 1. Hence,
f@ — f in H(La,Rn)

Let O be strongly star-shaped with respect to (o and supp f € O. Then for
0e(0,1)

?ﬁ

supp fo = O(supp f — o) + ¢o € (0 — ¢o) + ¢ C O. a

Remark 3.14. 1f f € H(Ly, Q) and ¢ € D(R")|,, then by the product rule for
distributional derivatives also ¢ f € H(Ly, Q) and Ly(¢f) = Lo f + Y iy (i) Li f
(see [7, equation (3.1.1)’]).

Lemma 3.15. For every f € H(Lyp,R™) exists a sequence (fr)gen in H(Ls,R™)
with compact support supp fr, C supp f that converges to f in H(Ly,R™).
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Proof. Let ¢ € C*(R™,R) be such that

{1}, <1,
P(¢) € 4 10,1], i1 <I¢lf <2,
{0}, if|icl = 2.

Then f; == ¢(3)f € L*(R")™ and fi, — f in L?. By the previous remark we
have Lo fro = ¥(3)Lof + £ 311 (8:%)(1.)Li f and therefore f € H(Ls,R™). Since
10i||oc < 00 and || L f|| 2 < ||Lill|| fll 22 < 0o, we have Ly fr, — Lo f as ¢(;)Lof —
Lyf in L?(R™)™2 and consequently f — f in H(Ly, R™). a

The next result is essentially [3, Proposition 2.5.4, page 69], except that we allow
Q to be unbounded.

Lemma 3.16. For Q C R" (open with bounded Lipschitz boundary) there exists an
open covering (0;)¥_, of Q such that O; NQ is bounded and strongly star-shaped for

1=

ic{l,...,k} and Oy C Q

Proof. Since §2 has a bounded Lipschitz boundary, there is an open ball B,.(0) such
that 9Q C B,(0). Hence, B,(0) N is bounded and open with bounded Lipschitz
boundary and we can apply [3, Proposition 2.5.4, page 69]. This gives an open
covering (O;)*_, of B,.(0) N and in particular of 99 such that O; N Q is strongly
star-shaped. We define Og as B.(Q\ Ule 0;), where ¢ > 0 is small enough such
that Og C Q. Q

The next lemma is similar to [5, Lemma 1, page 206], which proves the result for
Ly = rot. The main idea of the proof can be adopted.

Lemma 3.17. If f € H(Ly,N) is such that
(Lof,d)r2(0) + (f, LYY 2y =0 for all ¢ € DR™)™, (3.2)
then f € Ho(Ly, Q).

Recall the definition of a positive mollifier: Let p € D(R™). Then we define p, by
pe(Q) = e_”p(%). We say that p is a positive mollifier, if p(¢) >0, [5, p(¢)d¢ =1
and lim,_,o p. = g in the sense of distributions, where dq is the Dirac delta function

({00, 9)pr. > = 9(0)).
In particular, for every f € L?(R™) holds

pexfi= | p(Of(—CQdc =3 in LXRM).

R”

Proof. Let f € H(Ly, ) satisfy (3.2). Then we have to find a sequence (fy,)nen in
D(£2)™2 that converges to f with respect to ||.||r(z,,0)-

We define f and LAa‘/f as the extension of f and Ly f respectively on R™ such that
these functions are 0 outside of Q. By

— — (3.2
(Lo f, d)prmn), ey = (Lof, &) L2y = (Lo f, &) L2(0) = (f,—LY)r2(q)

= (f, ~LE®) 12mny = (f, —LEb) ey D)

for ¢ € D(R™)™1, we see that LAa}’ = ILpf and f € H(Ly,R™) with supp f C Q.
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By Lemma 3.16 there is a finite open covering (O;)¥_, of Q such that O; N Q is
strongly star-shaped for i € {1,...,k} and Oy C 2. We employ a partition of unity
and obtain («;)¥_,, subordinate to this covering, that is

a; € C°(R™), suppa; CO;, «;(¢) €[0,1], and Zaz =1 for (€.

Hence, f = Zf:o a; f and we define f; == o, f. By construction f; € H(Ls,R™) and
supp fi € O; N Q.
e Forie {1,...,k} we have O; N is strongly star-shaped. Lemma 3.13 ensures
that supp(f;)e C O; NQ for 6 € (0,1) and (f;)g — fi in H(Lp,R™) for 6 — 1.
Let p. be a positive mollifier. Then p. * g — g in L?(R") for an arbitrary
g € L?(R™). Since Lyp(pe * h) = p * Lph, we also have p. * h — h in H(Ly, R™)
for h € H(Ls,R™) and since p. € C*°(R™) we have p. x h € C*(R™)™=2.
For fixed 8 € (0, 1) and e sufficiently small, we can say supp pex(f;)s C O;N.
Hence, by a diagonalization argument we find a sequence (pc; * (fi)o,)jen in
D(2)™2 converging to f; in H(Ly,R™). Doing this for every i € {1,...,k}
yields sequences (f; ;)jen in D(2)™? converging to f; in H(Ly, R™).

e For fy we have supp fo € Og C © and by Lemma 3.15 there exists a sequence
(91)1en in H(Lg,R™) that converges to fo in H(Ly,R™) such that every g; has
compact support in 2. Every g; can be approximated by p. % g; for ¢ — 0
in H(Lp,R™) and if € is sufficiently small supp pe * g; C Q. A diagonalization
argument establishes a sequence (fy ;)jen in D(2)™2 that converges to fy in
H(Ly,R™).

Consequently, (Zf:o fi)j)j oy I8 a sequence in D(€2)™2 that converges to f in
H(Lp,R™) and by Lemma 3.10 also in H(Ly, §2). a

Theorem 3.18. D(R”)m2| is dense in H(Ly, ).

Proof. Suppose D(R™)™2
f € H(Ly,?) such that

(f, 9 uLo.0) = (f,9)12 + (Lof, Log)> = 0 for all g € D(R™)™,. (3.3)
In particular, for an arbitrary h € D(2)™2 we have
(f,hyprp = (f.h)r2 = —(Lof, Loh) 12 = —(Lof, Loh)p,p = (L Lo f, h)p .
which implies that f = L' Lyf € L*(Q)™ and fo == Lof € H(LY, ). Hence we
can rewrite (3.3) as
(LY Laf g2 + <Laf Log)r2(o) =0 forall ge DR™)™,.
—fo =fo

| q 1s not dense in H (Lo, ). Then there exists a non zero

By Lemma 3.17 (switching the roles of Ly and L) we have fo € Ho(L}, Q). Since
D(Q)™ is dense in Ho(LY, ), there is a sequence (fy)nen in D(Q)™ converging
to fo with respect to .||y o) The fact f = L Lo f = L} fo implies

(for Fa)mczn .y = (fos ) r2 + (LY fo, LY fu) 12 = (Lo f, fu) 2 + (f. LS fo) 12

= (Lo f, fn)pr,0 — (Lo f, fn)D' D
=0.
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Since ”fO”?{(Lg,Q) = limn o0 (fo, fa) mery,0) = 0, we have fo = 0, which implies
f =LY fo = 0. Hence, D(R")™2 ’Q is dense in H(Ly, Q). a

4. Port Hamiltonian systems. In this section we will introduce linear first order
port-Hamiltonian systems on multidimensional spatial domains and illustrate the
difficulties we want to overcome.

Definition 4.1. Let m € Nand P = (P;)},, where P; is a Hermitian m xm matrix.
Moreover, let H: Q — K™ ™ be such that H({)" = H(¢) and eI < H(¢) < CI for
a.e. ¢ €  and some constants ¢, C' > 0 independent of (. Then we endow the space
Xy = L2(Q)™ with the scalar product

1

() = (M9 = 5 [ (SO, 0(Ohn Q)

We will refer to X3, as the state space and to its elements as state variables or
states. Furthermore, let Py € K™*™ be such that Pg‘ = —PFy. Then we will call the
differential equation

5700 = 20 GE PHIOR(.0) + R(HOw1.0). 1€ e,

2(0,¢) = zo(C), (e

a linear, first order port-Hamiltonian system, where xo € L?(Q)™ is the initial state.
The associated Hamiltonian H : Xy — Ry U {0} is defined by

1

H(z) = (2.0) 0, = 5 [ (OO, (C)en NG,

(4.1)

where H is called the Hamiltonian density.

In most applications the Hamiltonian describes the energy in the state space.
By the convention of regarding a function xz: Ry x @ — K™ as z: Ry —
L?(2; K™) by setting x(t) = (¢, .), we can rewrite the PDE (4.1) as

n
T = (Zaipi+PO>Hx: (P8+PO)H.T, .13(0) = X,
i=1
where P is defined by Definition 3.2 replacing L with P.
We want to add the following assumption on P.

Assumption 4.2. Let m, my,ms € N such that m = my +my and let L = (L;),
such that L; € K™ *™2_ Then we assume that P = (P;)?_; has the block structure

0 L

Assumption 4.2 implies that P contains only Hermitian matrices. According
to the block structure we split x € K™ into [iiHL where zpn = (z;)%} and

xp = ()1, +1- We have the identities H(P, Q) = H(LY,Q) x H(Ly, ),

10 Iy 10 L
et 5] e nefa 5]
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By Lemma 3.8 we have for z,y € H}(Q)™

(Bx,y)r2() + (2, Pay>L2(Q)
= ﬂo%%@DLZ(aQ)

I R A S

= (LyoxL, YY) 200 + (L5 vozn, YouL) 12 (a0)
= (Lyowr, YoyoH) L2 09) + (Yoxrr, Luyoyr) L2 (oq)-

Hence, B = L?(0Q)™, Byz = L,y and Byx = ypx v is reminiscent of a bound-
ary triple for Aj = By (Ag = Pj is skew-symmetric by Remark 3.7). However, we
need to extend (4.2) for x,y € H(P, ). In order to do this we have to introduce a
new norm on L?(9)™, which will lead to the notion of quasi Gelfand triples.

5. Quasi Gelfand triples. Normally when we talk about Gelfand triples we have
a Hilbert space Xy and another Hilbert space X, that can be continuously and
densely embedded into Xy. The third space X_ is given by the completion of X}
with respect to

lole. = sup L0l
rex\(oy Ifllas

The duality between Xy and A_ is given by
<g7 f>X,,X+ = khm <gk:a f>X07
—00

where (gr)ren is a sequence in Xy that converges to ¢ in X_. Details for “ordinary”
Gelfand triple can be found in [6, ch. 2.1, p. 54] or in [13, ch. 2.9, p. 56].

We want to weaken the assumptions such that the norm of X’ is not necessarily
related to the norm of Xy. This is in particular necessary for Maxwell’s equations.
In Example 8.10 we point out that is not possible to associate an “ordinary” Gelfand
triple to the spatial differential operator of Maxwell’s equations.

We will have the following setting: Let (X, (.,.)x,) be a Hilbert space and (., .) x,
another inner product (not necessarily related to (., .) x,) which is defined on a dense
(w.r.t. ||| x,) subspace D, of Xy. We denote the completion of Dy w.r.t. |.||x, =
/(- -)a, by Xy. This completion is again a Hilbert space with the extension of
(-,-)a, , for which we use the same symbol. Now we have D, is dense in Xy w.r.t.
||.llx, and dense in Xy w.r.t. ||| x,

Summarized:

e X Hilbert space endowed with (.,.) x,.

e D, dense subspace of Xy (w.r.t. ||.||x,)-

e (., .)x, another inner product defined on D.

e X, completion of D, with respect to (BB

Example 5.1. Let Xy = ¢%(Z\ {0}) with the standard inner product (z,y)x, =
23;1 TnUn + T_nY_n. We define the inner product

Zn xnyn+ —T T
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and the set Dy == {f € Xy : ||f|la, < +oo}. Clearly, this inner product is well-
defined on D+. Let e; denote the sequence which is 1 on the i-th position and 0
elsewhere. Since {e; : i € Z\ {0}} is a orthonormal basis of Xy and contained in
D+, D+ is dense in &j. The sequence (Z?:l e,i) is a Cauchy sequence with
respect to ||.| x, but not with respect to ||| x,.

neN

Definition 5.2. We define

gaf X
||g||X, — sup |< > 0|

——= forge Xy and D_ = {g €Ay |lgllx. < +oo}.
rebpioy Il

We denote the completion of D_ w.r.t. ||.||x. by X—. We will also denote the
extension of ||.||x_ to X_ by ||.|[x_-

Remark 5.3. By definition of D_ we can identify every g € D_ with an element of
X by the continuous extension of f € Dy + (g, f)x, to &4. The completion A_
is isomorphic to the closure of D_ in X as gl = llgllx_ for g € D_.

Lemma 5.4. D_ is complete with respect to ||gllx_nx, = 1/ll9ll%, + lgllz_ -

Proof. Let (gn)nen be a Cauchy sequence in D_ with respect to ||.||x_na,- Then
(gn)nen is a convergent sequence in Xy (w.r.t. ||.||x,) and a Cauchy sequence in D_
(w.r.t. ||.]lx_). We denote the limit in Xy by go. By definition of ||.||x_ we obtain

for f € D+
oo, F)aal = i [(g, )| < i lgulla 1 fll, < Ol v,

and consequently go € D_.
Let € > 0 be arbitrary. Since (g, )nen is a Cauchy sequence with respect to ||.||x_,

there is an ng € N such that for all f € D, with lflla, =1
€ .
|<gnfgm7f>.)(o|§§7 if namzno

holds true. Furthermore, for every f € BJF there exists an my > ng such that

f ..
1{90 = Gms» [lao| < l !X* , because ¢, — go w.r.t. ||.||x,. This yields

|<gO_gn7f>X0| < ‘<gO_gmf7f>Xo| |<g7nf_gn,f>2(0|
[PAIE - (FAIE [PAIE

Since the right-hand-side is independent of f, we obtain

< €, if n 2 no.

lgo = gnllx- = sup 80 = n o]

<e if n>ng.
feby\{0} Hf||X+

Hence, go is also the limit of (g, )nen with respect to ||.||x_ and consequently the
limit of (g, )nen With respect to ||.||x_na,- a

Lemma 5.5. The embedding i1: Dy C Xy — Xo,f — [ is a densely defined
operator with ran i, is dense in Xy and ker iy = {0}. Furthermore, the embedding
t—: D_CX_ — Xp,g > g is closed and ker . = {0}.

Proof. By assumption on D+ and definition of X, the embedding 7, is densely de-
fined and has a dense range. Clearly, ker 7y = {0} and ker._ = {0}. By Lemma 5.4
t_ is closed. Q
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Lemma 5.6. Let i, denote the adjoint relation (from Xy to X ) of the embedding
mapping iy in the previous lemma. Then % is an operator (single-valued, i.e.
mul 7% = {0}) and ker 7%, = {0}. Its domain coincides with D_ and i*.v_: D_ C
X_ — Xy is isometric.

Ifker iy = {0}, then ran i’ is dense in X,
Proof. The density of the domain of 7y yields mulif = (domi;)* = {0}, and

ran Z+XO = Ap yields ker 7%, = {0}. The following equivalences show dom % = D_:

g € dom i’ & (g,04f)x, is continuous in f € Dy w.r.t. |||,

& sup 7‘<g’f>%| < +o00
feDi\{o0} (PR
sSge D
For g € D_ C X_ we have
ol = sp Hegllul_ g MEolel g, gy
rebangoy Ml pepovoy I/ lx "

which proves that % +_ is isometric.
If ker 7y = {0}, then the following equation implies the density of ranz% in X}

{0} =keri; = keri%* = (rani’)™". Q
Remark 5.7. As mentioned in Remark 5.3 every g € D_ can be regarded as an

element of X} by the continuous extension of D > f + (g,i4f)x, on X}. Since
D_ = dom i, this extension equals (7% g,.)x, -

Proposition 5.8. The following assertions are equivalent.

(i) There is a Hausdorff topological vector space (Z,T) and two continuous em-
beddings ¢x, : Xy — Z and ¢x,: Xy — Z such that the diagram

+

X
id Py
D+/ \Z
S o
0

commutes.
(i) If Dy 3 fr = 0 wrt. ||.||x. andlim, o fn exists w.r.t. ||.|| x,, then this limit
is also 0 and if D, > f, = 0 w.r.t. ||.||x, and lim, o fr exists w.r.t. ||.||x,,

then this limit is also 0.

(i) i4: Dy C Xy — Xo, f — [ is closable (as an operator) and its closure is
injective.

(iv) D_ is dense in Xy and dense in X .

Proof. (i) = (ii): Let (fn)nen be a sequence in D such that f, — f w.r.t. X and

fn — f wart. Xy. Since T is coarser than both of the topologies induced by these
norms, we also have
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Since T is Hausdorff, we conclude f = f . Hence, if either f or f is 0, then also the
other is 0.

(i) = (iii): If (fn, fn)nen is a sequence in i that converges to (0, f) € Xy x Ap,
then f = 0 by (ii). Hence, mul7; = {0} and consequently i is closable. On the
other hand, if (f,, fn)nen 18 a sequence in 7y that converges to (f,0), then f =0
by (ii). Consequently, keri; = {0} and 7, is injective.

(iii) = (iv): We have (dom7%)* = muli%* = muli;. Since 7y is closable, we
have mulz; = {0}, which yields that dom % is dense in X;. By Lemma 5.6 dom 7%
coincides with D_.

The second assertion of Lemma, 5.6 yields that ran 7%, = i D_ is dense in Xy. As
mentioned in Remark 5.7 every element g € D_ can be identified with (% g,.)x, €
X . Therefore, the density of i, D_ in X implies the density of D_ in A", because
J = (f,.)x, is a unitary mapping between Xy and X’ .

(iv) = (i): Let Y := D_ be equipped with ||g|ly = ||gllx_nx, = 1/llgll%_ + HgH%(O

We define Z :=Y” as the (anti)dual of Y. Then we have

[{F9) x| < I fllxollgllee < (112 llglly for feXo,geY
and [(f,59)x. | < fllxy IT5glla, < 1flaillglly  for feXigeY.
——

=llgllx_

Hence, ¢x,: f — (f,.)x, and ¢x, : f — (f, 7% .)x, are continuous mappings from
Xy and X, respectively, into Z. The injectivity of these mappings follows from the
density of D_ in Xy and D_ in A’ (% D_ dense in X ), respectively. For f € D,
we have

b, f={f,T D, = (04 f, ) = a0 it f

and consequently the diagram in (i) commutes. a

If one and therefore all assertions in Proposition 5.8 are satisfied, then X} N
Xy is defined as the intersection in Z and complete with the norm |[|.||x, nx, =

””g@ + |[-[I%,- Moreover, we define D, as the closure of Dy in Xy NXy (wor.t.

|l.llx na,). Note that although X} N &y may depend on Z, D is independent of
Z. We will denote the extension of 7, to D4 by ¢4, which can be expressed by
ty = i. The adjoint ¢ coincides with 7. Also D_ does not change, if we replace

b+ by D in Definition 5.2 and all previous results in this section also hold for D
and ¢y instead of Dy and i, respectively. If 7, is already closed, then D, = D,.

Lemma 5.9. Let one assertion in Proposition 5.8 be satisfied. Let Z =Y, where
Y = D_ endowed with ||g|ly = llgllx_rx, = \/ll9ll5_ + lgll%k, (from Proposition 5.8
(iv) = (i)). Then we have the following characterization for D, :

e Dy =dom:i*,

e D.=X,NXyinY
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Proof. Note that for g € D_ we have g = (¢})" "% g and that % . is isometric
from dom¢_ onto dom(c%)~!. The following equivalences show the first assertion:

fedom* & D_ > g (f,1_g)x, is continious w.r.t. ||.||x_
& D_>g0 (f,(15) i i_g)x, is continious w.r.t. ||| x_
& f € dom ((Li)_l)* =dom:;' =ranty = D,

We define P, = Xy N A} and we define P_ analogously to D_ in Definition 5.2:

lole. == sup L0 )]

and P_:={g€ Xy:|gllp. <+4oo}.
repgor ISl

Clearly, |lgllx_ < |lgllp_ for g € P_ and consequently P— C D_. Furthermore, we
can define 1p, : Py C Xy — Ap, f ~— f analogously to i;. Note that ¢p,_ is closed
due the completeness of (X N Xp, ||| ¥, na,). Then we have domtp, = P_ and
iy € vp, and therefore ¢, C 2%, For g € D_ and f € Py we have, by definition of
PJ’_:X_A'_QXO iIlZ7

g: Nl = (g, Ha | < Newgllae e, = gl (£,

which yields [lg|p_ < ||gllx_. Hence, P- = D_, vp =1} and tp, = Ty, which is
—X NX
equivalent to Py = X, N X = Dy =D.. Q

Theorem 5.10. Let one assertion in Proposition 5.8 be satisfied. Then the mapping
1 can be uniquely extended to a isometric and surjective operator W: X_ — X, .
In particular X_ is a Hilbert space whose (original) norm is induced by (g, fYx_ =
(Vg, ¥ f)x, and ¥ is unitary.

Proof. By Lemma 5.6 t%¢_: D_ C X_ — X is an isometry with dense range, since
t4 is closed and injective by assumption. Since D_ is dense in X_ by construction,
we can extend ¢} ¢t by continuity to A_. We denote this extension by ¥. For an
arbitrary g € X_ there exists a sequence (g, )nen in D_ that converges to g (w.r.t.
[[-Ilx_). Hence,

19l = lim [Wgull, = T 5o galle, = T lgnllx = lgllx -

This yields that ¥ is isometric and ran ¥ is closed in A;. Since ran ¥ also contains
the dense subspace ran 7, the mapping ¥ is surjective.

Clearly, this implies that ||.||x_ is induced by the inner product (.,.)x_ = (¥., ¥.)x,
and X_ Hilbert space endowed with this inner product. Moreover, ¥ is then uni-
tary. d

Corollary 5.11. If one assertion in Proposition 5.8 is satisfied, then X_ can be
identified with the (anti)dual space of Xy by

A { Xo = X
g = (Yg,)x,,
where ¥ is the mapping from Theorem 5.10.

If X} and X5 are Hilbert spaces and X5 can be identified with the dual space of
X; by a unitary mapping A : X5 — X7, then we define

(9, a2, = <Agaf>X1’,X1 = (Ag)(f)-
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Xo

FicUre 1. Illustration of a quasi Gelfand triple, where D, =
dom¢y and D_ = dom¢_.

Remark 5.12. For f € D, and g € D_ we have

(9, Na_xy = (Vg fla, = (ieg, lay = (=g, 04 f)xy = (9, o
Since these two sets are dense in Xy and X_ respectively, we have for f € X, and
ge X_
<gvf>X_,X+ = ( lim <gnvfm>Xoa

n,m)—(00,00)

where (f,)men is a sequence in D, that converges to f in Xy and (gn)nen is a
sequence in D_ that converges to g in A_.

Definition 5.13. Let X, Xy and X_ be Hilbert spaces, where X_ can be identified
with X} . Furthermore, let 1 : domiy € Xy — Xy and ¢—: dom:_ C A — A
be densely defined, closed, and injective linear mappings with dense range. We call
(X4, Xo, X_) a quasi Gelfand triple, if

<gvf>X7,X+ = <L—gv L+f>Xo (51)

for all f € domvy and g € dom¢_, and dom:% = ran._. The space Xy will be
referred as pivot space. We define X1 N Xy :=ranc¢y and X_ NAp =ran¢_.

Figure 1 illustrates the setting of a quasi Gelfand triple. Since X_ can be iden-
tified with X and X can be identified with X, there exists a unitary operator
U: A_ — A4, In fact, by (5.1) this ¥ is the extension of ¢3¢, which already
appeared in Theorem 5.10. We will show this in detail in Proposition 5.16. We will
call W the duality map of the quasi Gelfand triple.

In contrast to “ordinary” Gelfand triple, the setting for quasi Gelfand triple is
somehow “symmetric”, i.e. the roles of X, and X_ are interchangeable, since neither
t+ nor «_ have to be continuous, as indicated in the beginning of this section.

Lemma 5.14. Let (X}, Xy, X_) with vy and o— satisfy all conditions of Defini-
tion 5.13 except dom:y =rant_. Then

dom:} =ran.. < dom:® =rantg.

In particular, if (X4, Xo, X_) is a quasi Gelfand triple, then also dom:* = ranty
holds true.

The proof of this is basically the first part of the proof of Lemma 5.9.
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Proof. By (5.1), it is clear that dom %} D ran:_ and dom:* D ran:y holds. More-
over, for f € domty, g € dom¢_ and the duality mapping ¥ we have

(9, fla. = (Y, fla, = (g, Fla_x, = (t-g, 14 f) x,,

which implies ¢3¢ C ¥ and * ¢, C ¥*. In particular, both ¢} ¢ and :* ¢, are
isometric.

Let dom ¢ =ran¢_. Then ¢% ¢ is isometric from dom:_ onto dom(¢%)~*. The
following equivalences

fedom* < domi_ 3 g~ (f,t_g)x, is continuous w.r.t. ||.||x_
& dome 3 g (f, (1) M ehi_g)a, is continuous w.r.t. ||.[[x
& f € dom ((Ai)_l)* =dom:;' =rancy
imply dom¢* =ranc¢,.

The other implication follows analogously. d

Lemma 5.15. Let (X}, Xy, X_) with vy and ¢— salisfy all conditions of Defini-
tion 5.13 except dom: = ranit_. Then there exists an extension i_ of v_ that
respects (5.1) and satisfies dom % = rani_. In particular, (X4, Xy, X_) with 14
and i_ forms a quasi Gelfand triple.

Proof. Note that
g € dom:} & domey > f = (g,t4 f)a, is continuous w.r.t. ||.||x, .

Hence, for g € dom (¢} there exists an h € A_ such that

(9,04 xy = (h, fla_x, forall fedomey. (5.2)
We define ¢(g) := h for g € dom,. Clearly, ¢(g) = 1~ 'g for g € ran._. Therefore,
i— = ¢! is an extension of (_ that satisfies dom ¢ = rani_. Moreover, by (5.2)
we have (i_g, ¢4 f)x, = (9, f)x_,x, for g € domi_ and f € domu,. a

Proposition 5.16. Let (X, Xy, X_) be a quasi Gelfand triple and V: X_ — X
be its duality map. Then

e =W, g =W 0 = U=l oand o= \I/*L_T_l.
Proof. Let f € dom¢y and g € dom¢_. Then

Vg, flay =9 Fla_xy = (-9, t4 Fag = (-9, -
Since dom ¢y is dense in Xy, we have Wg = 1% 1_g for all g € dom:_. Applying
=% on both sides gives W1 = ¢ . Moreover, the density of dom:_ in A_ yields
W=
Analogously, we can show ¥*.; ' = * and U* =%, . Q

Theorem 5.17. Let X\ and Xy be Hilbert spaces and t4: domey C Xy — A
be a densely defined, closed, and injective linear mapping with dense range. Then
there exists a Hilbert space X_ and a mapping t— such that (X4, Xy, X_) is a quasi
Gelfand triple.

In particular, X_ is given by Definition 5.2, where Dy = raniy.

Proof. We will identify dom ¢y with ran¢; and denote it by D;. Then item (iii)
of Proposition 5.8 is satisfied. Hence, the corresponding D_ (Definition 5.2) is
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dense in X and its completion A_ (w.r.t. to ||.||x_) can be identified with A, by
Corollary 5.11. The linear mapping

) .{D_QX_ —~ A,

g = 9
is densely defined and injective by construction. By the already shown ran:_ = D_
is dense in &p. Finally, by Lemma 5.5 ¢ is closed and by Lemma 5.6 dom:} =
D_ =rant_. a

Remark 5.18. By Theorem 5.17 the setting in the beginning of the section estab-
lishes a quasi Gelfand triple, if one assertion of Proposition 5.8 is satisfied.

Until the end of this section we will assume that (X, Xy, X_) is a quasi Gelfand
triple and we will identify dom ¢, with ran¢; and denote it by D,. The set D_
is defined by Definition 5.2 for D, . This set coincides with ran:_, which we will
identify with dom¢_.

Proposition 5.19. The space Dy N D_ is complete with respect to ||.|x,nx_ =

1%, +1-1% -
+

Proof. For f € D, N D_ we have
1%, = [0 Phaol = 1 Pa xS Ila Ly < Iy mae -

Hence, every Cauchy sequence in D, ND_ with respect to ||.||x, na_ is also a Cauchy
sequence with respect to ||.||x,, ||.|[x, and |.|lx_.

Let (fn)nen be a Cauchy sequence in D N D_ with respect to ||.[|x,nx_. By the
closedness of ¢, the limit with respect to |.||x, and the limit with respect to ||.||x,
coincide. The same argument for ¢_ yields that the limit with respect to ||.||x,
and the limit with respect ||.||x_ also coincide. Therefore, all these limits have to
coincide and (fy,)nen converges to that limit in Dy N D_ w.r.t. [|.|x, nx_- a

Lemma 5.20. The operator

Dy xD_CXy xX_ — A,
e o] o ree

s closed.

Proof. Let (([gz],zn))neN be a sequence in [L+ L_] that converges to ([5],2) in
Xy x X_ x Ay. Then we have

23 = Y [lfn+ gal%, = Jim (Ifal, + loal%, +2Re(fr, 0a) 2,).

Since 2Re(fn, gn)x, converges to 2Re(f,g)x, x_, we conclude that | f,[x, and
llgnllx, are bounded. Hence, there exists a subsequence of (f,)nen that converges
weakly to an f € Xp. Moreover, by Lemma A.3 we can pass on to a further
subsequence ( fr,(x))ken such‘that (G Xh= f"(k))jeN converges to f strongly (w.r.t.
Il 2 )- The sequence (% >y f”(k))jeN has still the limit f in X, (wr.t. [|.]|x,)

and because ¢4 is closed we conclude that f = f € D;. By linearity we also
have % S, Gn(k)y — 2 — f in Xy for the same subsequence. Since % S, Gn(k) is @
Cauchy sequence in both X_ and A}, the closedness of ¢ givesthat g = 2—f € D_.

Hence, z = [L+ L_] [g] and the operator [L+ L_] is closed. a
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Proposition 5.21. D N D_ is dense in Xy with respect to ||.| x, -

Proof. By dom:} = D+ (Lemma 5.14) we have

Xy = (mul [L+ L,] )J‘ = dom [L+ L,r =dom:} Ndom:* =D_NDy. O

The following theorem can be found in [17, Theorem 2 p. 200], we just changed
that the operator maps into a different space, which does not change the proof.

Theorem 5.22 (J. von Neumann). Let T be a closed linear operator from the
Hilbert spaces X to the Hilbert space Y. Then T*T and TT* are self-adjoint, and
(Ix +T*T) and (Iy + TT*) are boundedly invertible.

Corollary 5.23. The set Dy N D_ is dense in Xy and X_ with respect to their
corresponding norms.

Proof. Applying Theorem 5.22 to ¢y yields ¢% ¢4 is self-adjoint. Hence, dom ¢ ¢y is
dense in &} . By Lemma 5.14 dom ¢} = D_, consequently dom:} ¢y =Dy N D_.
An analogous argument for ¢_ yields Dy N D_ is dense in X_. a

Corollary 5.24. Dy + D_ = &j.

Proof. Applying Theorem 5.22 to ¢4 gives that (Ix, + ¢4t ) is onto. Hence, for
every € Xy there exists a g, € dom¢ ¢} € D_ such that

T= gy +i4li G0
M~ N——
eD_ eDJr

Since g, € dom ¢y 7, we have ¢} g, € Dy and consequently x € Dy + D_. a

Proposition 5.25. Let T be a bounded and boundedly invertible mapping from Xy
to another Hilbert space Yy. Then Py :=TD, equipped with | f|ly, =T f|lx,
establishes a quasi Gelfand triple (Y+,Vo,Y_), where Y, is the completion of Py
and Y_ is the completion of P_ defined as in Definition 5.2, where D, is replaced
by Py. Moreover, P_ = (T*)"'D_ and ||g|ly_ = |T*g||x_ for g € P_.

Proof. The mapping T’ D, " D, — Py is isometric and surjective, if we equip its
domain with |[.||x, and its codomain with ||.[[y,. So the linear (single-valued)
relation [ 9]vy = {(Tf,Tg) : (f.g) € 14} C V4 x Vo is closed. Since this linear
relation coincides with the embedding tp, : P € Vi — Mo, f = f, Theorem 5.17
yields that (Y, Vo, Y—) is a quasi Gelfand triple.

For g € P_ we have

|<g,h>y0| _ ‘<9’Tf>yo‘

lglly- = sup
nep\{oy NPy, repivioy TSNy,
Ty, f .
e
repor I llxy
and consequently P_ = (T*)~'D_. a

Corollary 5.26. With the assumption from Proposition 5.25 the operators T‘D+
and (T*)_1’D7 can be continuously extended to unitary operators from Xy and X_

to Y. and Y_ respectively. These extension will be denoted by T, and (T*)"".
Moreover, ((T*)Z'g. T4 f)y_ .y, = (9, f)a_x, for g € X_ and f € X,.
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Corollary 5.27. Let S, T be a bounded and boundedly invertible mappings on Xj.
Then [ST‘DJr S(T*)’I‘EL ] is a densely defined closed surjective linear operator from

X x X_ to Xy. In particular ran [ST‘DJr S(T*)_lfDi] = Xj.

Proof. Let P = TD,. Then by Proposition 5.25 the corresponding P_ can be
obtained by (T*)~'D_. The mapping

X+><X7XXQ — erxy,xXO,

= f T 0 0 f
= gl = [0 (T2 0] |g
z 0 0 S-1 z

is linear bounded and boundedly invertible, where ). is the completion of Py as
in Proposition 5.25. Since (Y4, Xy, Y_) is a quasi Gelfand triple,
Tf
[tp, P ] = (T*)"'g :feDy,ge Do
Tf+(T)""yg

is closed in Y4 x Y_ x Xy (Lemma 5.20) and therefore also its pre-image under =

T 0 0
= (e )= | 0 T 0| [tpy up ] = [STur S(TT) ]
0 0o S

is closed in X} x X_ x &p. Furthermore, by Corollary 5.24

ran {ST’D+ S(T*)*l}Di} = Sran [Lp+ Lpi} =SX, = X. a

Lemma 5.28. Let Ay be a densely defined, closed, skew-symmetric operator on Xy,
Yo be a Hilbert space, and let T : Xy — Vo be a bounded and boundedly invertible.
Let (X4, Xy, X_) be a quasi Gelfand triple such that (X, B1,VBs) is a boundary
triple for Aj. Furthermore, let Y+ and Y_ be as defined in Proposition 5.25. Then
(Vi Vo, V-) is also a quasi Gelfand triple such that (Y1, T, By, ®(T*)"'By) is a
boundary triple for Af, where ® denotes the duality map of (V+, Vo, V-).

Proof. By Proposition 5.25 (Y4, Yo, Y-) is a quasi Gelfand triple. For z,y € dom Aj
we have, by Corollary 5.26,

(Biz, VBoy)x, = (Biz, Bay)a, x- = (T Baz, (T*) ' Bay)y. y_
= (T4 Biz, ®(T*) =" Bay)y, -

Since T : Xy — Y, and (T*)"': X_ — Y_ are surjective, the surjectivity of
[é(;})]ﬁi&] = [7:; Q(T*)(;I\P—l} [\1,3312] follows from the surjectivity of [‘PBBIQ]. a
Remark 5.29. In the setting of Lemma 5.28 the duality map ® can be described by
b = T+\Il((T*):1)_l. Note that ((T*):l)_1 can be described by the continuous
p P CY_ — X_. We denote this extension by T*. Hence,

extension of T*
O =T, UT*.
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6. Boundary spaces. In this section we will construct a suitable boundary space
V;, (Definition 6.5), such that we can extend the integration by parts formula
(Lemma 3.8). We will formulate the boundary conditions in this space in sec-
tion 7. This space will provide a quasi Gelfand triple with a subspace of L?(99)
as pivot space. In order to impose different boundary conditions on different parts
of the boundary we introduce boundary operators that only act on a part of the
boundary and their boundary spaces Vr, r, .

Definition 6.1. We say (Fj);?:l, where I'; C 09, is a splitting with thin boundaries
of 09, if
() Uy Ty =00,
(ii) the sets I'; are pairwise disjoint,
(iii) the sets I'; are relatively open in 012,
(iv) the boundaries of I'; have zero measure w.r.t. the surface measure of 9€.

For I' C 09 we will denote by Pr the orthogonal projection from L?(9Q)™! on
L2(T) == ran1rL, C L*(T')™, where 1,; denotes the indicator function for a set
M. We endow L2 (T") with the inner product of L?(9Q)™1. Therefore, we can adapt
(3.1) to obtain

<Laf, g>L2(Q)m1 + <f7 ng>L2(Q)7n2 = <Ll,’}/0f, PgQ’YoQ)Lz(aQ)ml . (6.1)
——
TLY
We define 7} : H'(Q)™ — L2(T) by 7} = Pr~yo and 71, := 79, Since both Pr and
7o are continuous, the mapping 7t is also continuous. Therefore, ker 7} is closed.
Note that Pr = 11 Pyq and consequently 7r£ =1rnp, and 1pL, = L, 1r.

Example 6.2. Let L be as in Example 3.3. Then L, f = v - f and L, is certainly
surjective. Therefore, L2(99Q) = L?(082), 71, = 7o and 7% = Lp~yo. Since L} = grad,
we have H(L}!, Q) = HY(Q).

Lemma 6.3. Let I' C 09 be relatively open and let the boundary of T' have zero
measure (w.r.t. the surface measure of 9Q). Then kert is closed as subspace of
HY ()™ endowed with the trace topology of H-HH(Lg,Q)7 i.e.

Il
kerl A A {YQ)™ = ker 7).

Proof. Clearly, kchEH'”H(Lg’Q) N HYQ)™ D kerwt. So we will show the other
inclusion. Note that for T C 9 we have

HYH Q)™ = {f € H'(Q)™ : 1yyof = 0 € L2(09)™ ).

Hence, HéQ\F(Q)m2 = Hémf(ﬁ)m% since the boundary of I' has zero measure. Let
(gn)nen be a sequence in ker 7L which converges to g € H'(2)™! with respect to
”'HH(LS,Q)' By Corollary 3.9 we have for an arbitrary f € HéQ\F(Q)’"2

(Loyof, 71 (9 = gn)) 22| = (Lo fyme(9 = gn)) 2] < | fllaczo.olg = 9nllazy.o)-

Since 7} (g9 — gn) = 7Lg and the right-hand-side converges to 0, we can see that

g L LyfyOHéQ\F(Q)m? By [13, Th. 13.6.10, Re. 13.6.12] VOH(%,Q\F(Q)m2 is
dense in L?(T")™2, which implies 75 g L ranlrpL,. By definition 7lg is also in
ran Ir L, which leads to 7t g = 0. Hence, ker 7} is closed in H'(£2)™ with respect
0 ||-[[zczy,0)- .
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By the previous lemma
6l = int{ lgllcry o : 7hg = 0}

is a norm on Mr = ranwL. The next lemma will show that this norm is induced
by an inner product.

Lemma 6.4. Let I' C 0N) be relatively open and let the boundary of I' have zero
measure (w.r.t. the surface measure of 2). Then the space (Mr,||.|[ar) is a pre-
Hilbert space. Furthermore, its completion denoted by (Mr, ||.||5z:) s isomorphic

H
to the Hilbert space H(LaH,Q)/ker WEH(LB’Q). The mapping 7% : HY(Q)™ — Mr

can be continuously extended to a surjective contraction 7% : H(LY Q) — Mr. The

_ . T HLEQ)
kernel of 7% satisfies ker 7 = ker 7 .

Instead of 79 we will just write 7.
Proof. By Lemma 6.3 ker 7 is closed in H!(£2)™! with respect to trace topology
S 1 .
of [|-lzz(zy ) » which implies that (H (Q)ml/ker L H'”H(Lg’m/kem{> is a normed

space (normed space factorized by a closed subspace is again a normed space). Since

v = 7Ll ar,

||[g]~||H(Lg’Q)/ker7rL

it is straight forward that [g]. — 7Lg is an isometry from (H H)m / ker 7l

. onto (Mr, || .
a0 ) 0000 (V)

Clearly, (Mr, ||.|[ar) has a completion (Mr,||.|l37-). By definition of the norm
|.lla7 we have for every g € H*(£2)™

ImLgllsz = InLgllare < lgllaey o)
r ( )

Therefore, we can extend 7% by continuity on H(L},2). This extension is denoted
by 7} and is a contraction by the previous equation.

Let g € H(L}', Q). Then by Theorem 3.18 there exists a sequence (g, )nen in
H'(Q)™, which converges to g. Therefore, we have

_T T T T .
I*Eglle = Jim ek gallase = JHm_ o llgn + Fllicry o
The triangular inequality yields

inf |lg+kll —llgn —gll < inf |lgn +k[| < inf g+ k[ + llgn — g
kek r keker b keker b

er7rL

Hence, we have

HﬁEgHm = keinf F||g + k”H(Lg,Q) = %Hg + kHH(Lg,Q) (6.2)
er T k

Eker

and consequently £ (LY, Q) / ker 7} is isomorphic to ran 7L Since H(LY, Q) / ker 7t

is a Hilbert space, in particular complete, and Mp C ran7t C Mr, we have Mr =
ran ﬁE. This makes M also a Hilbert space and Mr a pre-Hilbert space.

Finally, equation (6.2) implies ker 7} = ker7!. Qa
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Now we are able to define a complete subspace of H (Lg’, Q) that is in some sense
0 at one part of the boundary and the corresponding boundary space for the other
part of the boundary.

Definition 6.5. Let Ty, I’y C 99 be a splitting with thin boundaries and 77, the
extension of 7y, introduced in Lemma 6.4. Then we define

H . —T . =
Hr,(Ly,Q) =ker7;° and Vir, = ran7rL|HFD(LH7Q),

where we endow Hr, (L}, ) with H.||H(L379) and Vpr, with [[.[v, ., = |l l355

Instead of Vr go = ran7y = Maq we just write V.

From now on until the end of this section we will assume that I'g, I’y C 99 is a
splitting with thin boundaries. By Lemma 6.4 Vy, is a Hilbert space.

Note that Vi r, and Mr, are not necessarily the same space. Although, we have
Titg = Trg (in L2(0Q)™) for g € H'(Q)™ N Hr,(L},Q), but we can only say

_r _
172 gl < 17eglve v, -

Example 6.6. Continuing Example 6.2 yields Hp, (L}, Q) = HE ()™ = {f €
HY(Q)™ : 1,70 f = 0} which already appeared in the proof of Lemma 6.3. More-
over, we have 7y, = o, 71" = Ip 70, Vo = H72(0Q), and Vi r, = {f € H/*(9Q) :
flp, =0}

Lemma 6.7. The space Hr,(L}, Q) equipped with (., '>H(L3>Q) is a Hilbert space
and HY(Q)™ N Hp, (LY, Q) is dense in Hp, (LY, Q). Moreover, Vi 1, is a closed
subspace of Vi, and therefore also a Hilbert space.

Proof. By definition of Hr, (L}, Q) and Lemma 6.4 we have

Hr, (L}, Q) = ker 7;° = kerm;© = HY(Q)™ N Hy, (L}, Q).
Note that ker 7, C ker WEO, since WEO = 1p,7r. Again by Lemma 6.4, we have

ker 7, = kermp, C kerﬂ'Eo = ker ﬁE“.

Therefore, 7‘r£° o 7?;1 : Vi — Mrp, is single-valued (well-defined). For arbitrary
o€V and g € ﬁ;lgb we have

_T _ 1 . .
17 omr Pl = ke;ifﬁroug + Ell o < keigrfﬁllg + ks = l9lv. -
L

Hence, 75" o 77 ! is continuous and ker 77° o 77! is closed in Vy, and therefore also

a Hilbert space endowed with (.,.)y,, . The equivalences

Ty  ~—1 ——1 ~Ty .
¢ ckerm® o & T, ¢pCkerm,” & ¢€ran7rL‘kerﬁ£0
—_———
=Vr,ry

imply that Vr r, is closed and therefore a Hilbert space. d

Proposition 6.8. The mapping v, L,vo: H'(Q)™2 — L2(T'y) can be extended to
a linear continuous mapping

L)' : H(Ly,Q) = Vi 1,
such that ||LL* £y

L,y

< flla(Ls,0)-
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Proof. Let f € HY(Q)™2. For g € HY(Q)™ N Hr, (L}, Q) we have by Corollary 3.9
|(Lr, Lovof, ®Lg) 2 (ryym

= (Lo f, 7Lg) 20y | < I f o, 19l my 0)-

2 m
(9)7"101‘11“0(113,9) c Lw(rl) 1 of VL,Fl

is dense in Vp r,. For ¢ € M there exists at least one g € H'(Q2)™ N Hr, (LY, Q)
such that 7y g = ¢. Hence, we can rewrite the inequality as

By Lemma 6.7 the subspace M := ran ﬁ-L‘Hl

Ir, Loyof, &) rerym | < inf
(L, Lovof, @) pzeyym | < |1 lmro.0) geHl(Q)mlmHFO(Lg',Q)Hg”H(LH’Q)
TLg=9¢
= ||fHH(L0sQ)||¢||VL,I‘1'
We will extend the mapping ¢ — (1r, LYo f, #) L2(r,y=: by continuity on V. r,. We
will denote this extension by Z;. Therefore, we have

Er (@) < I flae. o lllver, -

This means that the mapping f — Z; from H'(Q)™2 to Vir, is continuous, if
we endow H'(Q)™ with ||.|gz,,0)- Once again, we will extend this mapping by
continuity on H(Ly, ) and denote it by LI*. a

Instead of writing L? we will just write L,,.
Remark 6.9. Since V1, is a subspace of Vi, sq = Vi, every element of V; can also
be treated as an element of V] 1. . By definition of L]* and L, it is easy to see that
Lhf=1L f’VL .. or equivalently L' f and L, f coincide as elements of Vj . for
;T ’

f € H(Lp, Q). Hence, we can say Vj C Vpr,- Since Hahn-Banach gives the

|VL,F1 =
reverse inclusion we can even say V’L’VL . =Vir,-
I ?

The reason for even defining LI instead of just using L, is that the range of
its restriction to H!(£2)™2 is also contained in L2(I'y), which will be important for
getting a quasi Gelfand triple.

Corollary 6.10. For f € H(Ly,SY) and g € Hr, (L}, Q) we have
<L[—)f, g>L2(Q)m1 + <.f7 ng>L2(Q)m2 = <I’l/f7 77-Lg>V£,F1 ViL,ry
For f € H(Ly,) and g € H(L}', Q) we have
(Lof,9) 12y + (fs LY 9) 12 yme = (L f, FLg)v, vy
= (T f L9y v,
Proof. Since H'(2)™2 is dense in H(Ly, Q) and H(Q)™ N Hr, (L}, Q) is dense in
Hr, (L}, ), the first equation follows from (6.1) by continuity. The second equation

is just the special case I'g = () and switching the roles of Ly and L} yields the last
equation. d

Theorem 6.11. The mapping L,: H(Ly, Q) — V} is linear, bounded and onto.

Proof. By Proposition 6.8 we already know that L, is linear and bounded from
]‘I(La7 Q) to V/L

Let 4 € V} be arbitrary. Since 7, is continuous from H(L},Q) to Vi, the
mapping g — (i, T.g)y; v, is continuous from H (LY, Q) to C. Consequently, there
exists an h € H(L}!, Q) such that

<ha g>H(Lg,Q) = </’(‘a7TLg>V}JVL for all g e H(L{I;a Q)
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For a test function v € D(2)™* we have

0= </¢L7 WLU>V£7VL <h ’U>H(LH Q) <h ’U>L2(Q)m1 + <L8 h L6 U)LQ(Q)mz

= <h ’U>D/(Q)m1 ,D(Q)™1 <La h7L8 v>D’(Q)7"2 D(Q)m2

= (I~ LoLy)h, ”>D' (@)1, D(Q)m1°

This means Ly L5 h = h in the sense of distributions. However, h € H(LY, Q) implies
h € L%(f2), which in turn gives LyLYh € L2(Q)™, and Li'h € L?(Q)™2. Therefore,
f = Loh € H(Ly, ). By Corollary 6.10 for f = L'h € H(Ly,?) and g € H(L}, Q)
we have

<M, 7TL9>V’L,VL <h > LH Q) <h g>L2(Q)7n1 + <L3 h La g>L2( Q)m2
=((I- LaLa)h 9 rx@ym + (Lo Ly b, wg)vr v,

= (L, (L 7TL9> v

Hence, L, f = p and L, is onto. Q

Corollary 6.12. The mapping LI : H(Ly, ) — Vir, is linear, bounded and onto.

Proof. By Proposition 6.8 we already know that LIt is linear and bounded form
H(Ly,Q) to V},. Remark 6.9 gives L, f |vL,F1 = LI f for f € H(Lp, Q) and V} . =
/L|VL r) which completes the proof. a

Theorem 6.13. (VL,FlaL?T(Fl)7VLF1) is a quasi Gelfand triple.

Proof. Let Dy = ran7rL|H1 @ equipped with [|.[[x, = [.[[v,, and let D_
Ty ’

denote the corresponding set from Definition 5.2 with Xy = L2(I'1). Then by

Remark 5.3 [|glx. = [lglly; . for g € D_ and ranlr, L,y € D- (by Proposi-
1

tion 6.8). By definition ran 1, L, is dense in L2(I';) and by Proposition 6.8 and
Corollary 6.12 also dense in V’L r,- Consequently, also D_ is dense in both L2 (Fl)
and V} . Hence, assertion (1V) of Proposition 5.8 is satisfied, and by Remark 5

the completions of D+ and D_ form a quasi Gelfand triple with pivot space L?T(I‘l).
By construction the completion of D is Vir,. By the density of D_ in V] . and
lgllxe = ||g||V/L1Fl for g € D_ the completion of D_ is Vj . a

Corollary 6.14. Hy(LY, Q) = oo (LY, Q) = ker7t, = ker L' and Ho(Lp, Q) =
Hpa(Ly, Q) = ker 7pn = ker L.

Proof. For g € Ho(LY, Q) there is a sequence (gy,)nen in D(2) converging to g, which

implies 79 = limy, 00 71gn = 0. Therefore, Ho(L,Q) C ker 7, = Hao (L}, Q).
On the other hand, if g € Hopa (L}, ), then

(Lof,9)r2ym + (fs LY 9) 12 (yme = (L f, FLg)v, v, =0
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for all f € H(Ly,Q). Hence, by Lemma 3.17 g € Ho(L},Q). Consequently,
Ho(LY, Q) = Haq(L}!,Q). The second equality of the statement holds by defini-
tion and the third will be proven by the following equivalences

g € kermp, & (Trg, )y, v, =0 foral o e 1%

= (ﬁLg,EVf>V£7VL =0 forall feH(LyN)
C&IHg, T om F)v v =0 forall fe H(Ly,Q)

& (L)g, ¢)vr v, =0 forall ¢ €V

&g €ker I,

Switching L with LH yields Ho(Ly, Q) = Hpa(Ls, ) = ker 7 pn = ker L. a

7. Existence and uniqueness via boundary triples. In this section we will
show that there is a boundary triple associated to the port-Hamiltonian differential
operator (P + Py)H, which enables us to formulate boundary conditions that admit
existence and uniqueness of solutions. Moreover, we will parameterize all boundary

conditions that provide unique solutions that are non-increasing in the Hamiltonian.

Recall the setting in section 4. Using np = [”OL ﬂSH ,

Lemma 6.4 and Propo-
sition 6.8, it is easy to see that Vp = Vi x Vru and therefore Vi, = V; x Vi,.

Furthermore, for B,: H(Fy,Q) — V} and 7p: H(P,Q) — Vp we have

5 0 Eu _ |7 0
P”_[LL" O} and 7TP—|:0 7_TLH:|-
Recall the splitting = = [%£"].  Accordingly, we introduce Hz = [(ngi“} for
r € H Y (H(P,Q)), so that
La(HSB)L 7 7 _ _
PHx = {Lg(ﬂx)LH} , [0 L,,] Hr = L,(Hx)L, [WL 0} He =7 (Hx)pn-

Theorem 7.1. The operator
Ay = —(Py+ Py)H, domAy:=H '(kerB)

is closed, skew-symmetric, and densely defined on Xy . Its adjoint is
Ay = (Py+ Py)H, dom Af =H (H(P,Q)).

Let B; = [ﬁL 0] H, By = [0 Ey] H and ¥ be the duality map of (Vr,, LZ(09),V}).
Then (Vi, B1,VYBs3) is a boundary triple for A§.

Proof. We define A as (Py + Po)H with dom A = H~'(H(P,Q)) on Xy. By
Lemma 3.5 By: H(P,Q) C L2*(Q)™ — L?(Q)™ is a closed operator. Since H is
a bounded operator on L?(Q)™, and X and L?(Q)™ have equivalent norms, it is
easy to see that A: H~V(H(P,Q)) C Xy — Xy is closed. Let B*# denote the
adjoint of B with respect to (.,.)y for any Hilbert space H. The adjoint of A can
be calculated by

;1* — ((Pa +PO)H)*XH — Hil((Pa _|_PO),H)*L2H — (Pa*m _|_P6‘L2)H
and according to Remark 3.7 we have Pa*L2 = —Pa’dom prr2 Where dom Png C
a
H(R),Q). Hence,

A* = —(Py+ Po)H|,,- C —A.

I(dom Py L?) = _A|H*1(dom P L?)
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Consequently, A* is skew-symmetric on X%. Since A is closed, we have A** = A.
Now we know that A is the adjoint of a skew-symmetric operator. So we can
talk about boundary triples for A. First we note that
ran [\1,3312] =ran7y xran WL, =V x V5.
Since H is self-adjoint and P, is skew-adjoint, we have for z,y € dom A
<AIE, y>XH + <$7 Ay>XH
= <P5)HLL‘, Hy>L2 + <HLL‘, PaHy>L2

by the the identity P = [ Log LOB} and Corollary 6.10 we further have

_ /| Lo(Hz)L (Hy) m (Hx)pn Lo(Hy)L
(et (G )+ o] 6 ).
= <L3(/H$)L7 (Hy)LH>L2 + <(H.%‘)L, Lg (Hy)LH>L2

+ (L5 (Ha) o, (Hy) L) o + () o, LY (My) 1)

= <I_/V(H$>L77?L(Hy)LH>V’L,VL + <77TL(H‘T)LH7I_/V(Hy)L>VL;V£
- <\I/BQx7B1y>VL + <BI$7\IIBQy>VL'

Therefore, (Vr,, By, \1132) is a boundary triple for A.

By Lemma 2.2 dom A* = ker By N ker By, which is equal to

ker By Nker By = H ™' (ker (7, 0] Nker [0 L,])=H " (ker7, x ker L,).
By Corollary 6.14 this is equal to H Y (ker L' x ker L,) = H~'(ker B,). Hence,
A* = Ap and Af = A. d

Remark 7.2. We can replace (Vr, B1,¥Bs) by (V,¥* By, By) in the previous the-
orem.

Theorem 7.3. Let Aj be the operator from the previous theorem and Wr, the
duality map associated to the quasi Gelfand triple (VL,rl,L,ZT(Fl),V’LFl). Then we
have (Vpr,, [ O] H,Up, [0 L] H) as a boundary triple for

A= A]

H1 (Hry (LY, Q) x H(Lo,)) "

Proof. Since we already have a boundary triple for Aj, we can show that A is the
adjoint of a skew-symmetric operator by Proposition 2.3 (iii). Hence, we have to
check, whether [¢]] Ct C Cin V;, x Vy, where C is the corresponding relation to
the domain of A according to Proposition 2.3. For B, By being the mappings from
the previous theorem we have (Note that Vi, 1, is a subspace of Vi; Lemma 6.7)

B
C= {\1152} dom A=V, xVp

I 0

For z,y € dom A we have, using Remark 6.9,
<le, \IJBQy>VL = <7_TL (Hl’)LH , E,, (Hy)L>VL,V’L = <7_1'L (Hw)LH, EEl (Hy)L>
= ([7r 0] Ha, ¥, [0 L] Hy)

[0 I} ¢t ={0} x Vir, S Ver, x VL =C.

4
VL,F17VL,F1

Vor,’
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hich yields item (i) in Definition 2.1. By ran |y y, ’r. | -
which yields item (ii) in Definition y ran | o g i o, (110 (Lo )

1

Vrr, X Vo r,, the remaining item (i) is fulfilled.
The next theorem is [9, Theorem 2.5].

Theorem 7.4. Let Ay be a skew-symmetric operator on a Hilbert space X and
(B, By, B2) be a boundary triple for Aj. Furthermore let K be a Hilbert space,

Wg = [Wl Wz], where Wi, Wy € L(B,K), and A = A(’§|d0mA, where dom A =

ker Wgp [gl} If ranWy — Wy C ran Wy + Ws then the following assertions are
2

equivalent.

(i) The operator A generates a contraction semigroup on X.
(ii) The operator A is dissipative.
(iii) The operator Wi + Wy is injective and the following operator inequality holds

WiWg + WeWT > 0.
We will reformulate this theorem to fit our situation.

Corollary 7.5. Let KC be some Hilbert space and W = [W1 WQ} Vo, xVor, —
K a bounded linear mapping such that ran W7 — Wy C ran Wy + Ws. Let

D= {z e H ' (Hr, (L}, Q) x H(Ly,))
c W [7 O] Ha + W [0 L)' Ha =0},
where U : V’L’Fl — Vi, 1s the duality mapping corresponding to the quasi Gelfand
triple. Then the following assertions are equivalent.
(i) (B + PO)H’D generates a contraction semigroup.
(i) (B + Po)’H|D is dissipative.
(iii) The operator Wy + Wy is injective and the following operator inequality holds

Corollary 7.5 already gives a parameterization via W for all boundary conditions
that make (B + Po)H a generator of a contraction semigroup. In particular the
corresponding PDEs have unique solutions that continuously depend on the initial
state and don’t grow in the Hamiltonian. However, checking continuity for boundary
operators which map into V can be difficult. Hence, it would be appreciated to
reduce the conditions on the boundary operators to conditions on better known
spaces like the pivot space L?(9€2). The next theorem will provide this.

The following result is a generalization of [9, Theorem 2.6] for quasi Gelfand triple
and also fixes some minor issues, like the specific choice of ¥ and the closedness of

[V1|B+ﬂ80 V2|B,ﬂBo} as an operator from By x B_ to K.

Theorem 7.6. Let (By,By,B_) be a quasi Gelfand triple, Ay be a closed skew-
symmetric operator and (B, B1, UBs) be a boundary triple for Aj, where U is the
duality map of the quasi Gelfand triple. For V1,V € L(By, K) we define

D= {a € dom Af : Bia, Bea € By and [Vl Vg] [gl] a= 0}
2
and the operator A = A6‘|D. If

(1) [V1|Boﬁl’>’+ V2|BomB,} is closed as an operator from By x B_ to I,
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(i) ker [Vi V3] is dissipative as linear relation on By,
(iil) ViV5" + Vo V" > 0 as operator on KC,
then A is a generator of a contraction semigroup.
Proof. Tt is sufficient to show that A is closed, and A and A* are dissipative.
Step 1. Showing that A is closed and dissipative. We have

B,

aeD<:>[B2

] a € (By x Bp) Nker [V1 Vg]

Bl *
- [wz] aeker [Vilg,ns, V¥ lugsns) -

=:C

We can write
C{Lﬂ €eBL xBy:qeBy, Ipe By:p=Yp, V1q+V2\I/*pO}.

For [}] € C we have
Re(q,p)s, = Re(q, ¥p)s, =Re(q, p)s, 8. = Re(q; p)5, <0,
which implies the dissipativity of A by Proposition 2.3. Assumption (i) implies that
C is closed in 837 which implies the closedness of A by Proposition 2.3.
Step 2. Showing that A* is dissipative. By Proposition 2.3 we can characterize the
domain of A* by
* By 0 I| ,Lg
d € domA* & [\IJBz]de [I O}C +

2

- B
(m’BOQBJr) o :
(Vour ) e

U By
@[Bl]dEran

|\p(80n6,)

The second equivalence needed the closedness in assumption (i), since (ker T')* =
ranT* for a linear relation (or even unbounded operator) 7' is not true in general.
Note that if P is a bounded and everywhere defined operator, and @ is a linear
relation, then (PQ)* = Q*P*. Hence, by Proposition 5.16

(Vilgyns, )7 = (Vieg)" = V7" = 0Vy

V1 (BonB_)’

where ¢y : By N By C By — By is one embedding of the quasi Gelfand triple and
(V2\I/*|\I,(30057))*B+ — (VQL_\I’*)* — (L_\I/*)*VQ*,

where ¢ : B_ N By C B_ — By is the other embedding of the quasi Gelfand triple.

From (W¢*)* = (_¥* and «* = U*. ;" (Proposition 5.16) follows (:_U*)* = T/* =

Ljrl. Consequently,

* *By _ —lyrx _ yrx
(VoW \I/(BOOB_)) TEu Ve =Y Vy—1(BonBy)"
Hence, for
*B+
{x} < ran (Vi’BOQB+) *B
Yy (V2¥ |\p(BDmB,))

= { [‘I’V‘ﬁ } kike Vi Y (BonB_)nVy By B+)},
2
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we have

Re(x, y>5+ = Re<\IJV1*k‘, V;k’>5+ = Re<V1*/€, V2*k'>57,5+ = Re<V1*k‘, V;k’>50
= Re(VaVi'k, k)i > 0.

Therefore, C* is accretive and by Proposition 2.3 also Ag is accretive, which

|dom A*
yields A* = —A0|d0mA* is dissipative. a

Remark 7.7. If we are already satisfied with the operator closure A is a generator
(instead of A) in the previous theorem, then we can replace condition (i) by

B+><B,
ker [Vl‘zsmm VQ‘BOHB,] C ker [V1|BOHB+ V2|BOOB,} ) (7.1)

where [V1\50m5+ Valsgns_ } is the closure as linear relation (possibly multi-valued).
Clearly, if (7.1) holds, then there is already equality.

Example 7.8. Let (B4, By, B_) be a quasi Gelfand triple that satisfies all condi-
tions of Theorem 7.6 and let M € L(By) be coercive (i.e. M > cl, ¢ > 0). Then
Vi =1, Vo := M fulfill all conditions of Theorem 7.6:

(i) Setting S = M= and T = M~2 in Corollary 5.27 implies the closedness of

[I|50m3+ M‘Boms, ]

(ii) For (z,y) € ker [Vi V2] we have = —My. Since M is positive this yields
Re(z,y)5, = Re(=My,y) = —(My,y) <0.
(iil) ViVy + VaVi = M* + M = 2Re M > 0.

I:I|Bgﬁ3+ M|Bomz, ] .
Actually, it would have been enough, if M € L(By) was boundedly invertible and
accretive. Clearly, also V7 := M, V5 =1 fulfill all conditions.

Moreover, Corollary 5.27 also implies the surjectivity of

8. Port-hamiltonian systems as boundary control systems. We will recall
the notion of boundary control systems, scattering passive and impedance passive
in the manner of [12]. We will show that a port-Hamiltonian system can be de-
scribed as such a system. This concept already provides solution theory (see i.e. [11,
Lemma 2.6]). It is well known that every scattering passive boundary control system
induces a scattering passive well-posed linear system.

Definition 8.1. A colligation = = ( L%j] ; [%} ) consists of the three Hilbert spaces

U, X, and Y, and the three linear maps G, L, and K, with the same domain Z C X
and with values in U, X', and ), respectively.

Definition 8.2. A colligation E := ([I(Lﬂ ; {%D is an (internally well-posed) bound-

ary control system, if
. G1. u
(i) the operator [IL(] is closed from X to [23‘;},

(ii) the operator G is surjective, and

(iii) the operator A = L|kor ¢ generates a contraction semigroup on X.
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We think of the operators in this definition as determining a system via

u(t) = Gz (1),
#(t) = La(t), 2(0) = zo, (8.1)
y(t) = K(t).

We call U the input space, X the state space, Y the output space and Z the solution
space.

Definition 8.3. Let = — ({g} [
system such that

AN

D be a colligation. If = is a boundary control

2Re(Lz,z)x + |Kz|3 < |Gzl for z € Z, (8.2)
then it is scattering passive and it is scattering energy preserving if we have equality
in (8.2).

We say Z is impedance passive (energy preserving), if Y =U', ¥ : U’ — U is the

75 (G+PK)

unitary identification mapping and == < { ] ; {5 ] ) is scattering passive

oL
L (G-vK)
(energy preserving).

Note that an impedance passive (energy preserving) colligation = does not need
to be a boundary control system. If i/ = ), then W is the identity mapping.

Corresponding to a port-Hamiltonian system we want to introduce the following
operators

Gp =Sy [ O] H: HHH(R), Q) C Xy — Vi,
L, = (P+ Py)H: H(H(P, Q) C Xy — Xy,
K, = (S*):l [O LV} H: H_l(H(Pa,Q)) C Xy — (SVL)/7

where S € L£(L*(99)™) is boundedly invertible, and S, and (S*)~! denote their
extension on Vy, and Vj respectively (see Corollary 5.26). By Lemma 5.28 also G|,
and K, establish a boundary triple for L, restricted to Hr, (L}, Q) x H(Lp, Q) and
(S+Vrr,, SLZ(T), (S+ VL r,)) is a quasi Gelfand triple For simplification S can be
imagined to be the identity mapping. We still have I'y,I'; as a splitting with thin
boundaries of 0.

Gp S+VrL,ry
Corollary 8.4. The colligation ([Lp ]; { Xy }) with solution space
Kp (S+Vr,ry)
Z =H""(Hr, (LY, Q) x H(Ly, )
is a boundary control system.

Proof. Since Ly, is closed on Xy with domain Z, and G, and K, are continuous
with the graph norm of L, we have [Gp Ly Ky } T is closed. By construction G, with
domain Z maps onto S;Vr, r,. Since Gy, is one operator of a boundary triple for Ly,
the restriction Lpfker G, is skew-adjoint and therefore a generator of a contraction
semigroup. a

Proposition 8.5. Let R € L(SL2(T1)) be coercive. Then the colligation = =

75 (Gp+RKp) u
({ Ly ]; {Xn}) with U = Y = SL2(T'y) endowed with || fllu = || flly =
75 (Go—RKy) | LY
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|R™2f|| 12 and solution space
Z ={x e H ' (Hr, (L}, Q) x H(Ly,Q)) : Gpx, Kpyz € SL2(T'y)}.
is a scattering energy preserving boundary control system

Proof. Let (xp, [Gpzn Lpxn Kprp]T)nen be a sequence in [G, L, Kp]T (re-
stricted to Z) that converges to (z,[f y ¢|7) € Xy x U x Xy x U. Since L,
with domain H(P, ) is a closed operator and Hr, (LY, Q) x H(Ly, ) is closed in
H(P,Q), we conclude that z € H~(Hr, (L}, Q) x H(Lp,?)) and y = Lyz. Hence,
Gpz,, converges in Sy V1, to Gpz and in SL2(T'y) to f. Since (S4Vpr,,SL2(I'1),
(S+Vrr,)') is a quasi Gelfand triple, we have Gpx = f. Analogously, we conclude
Kpz = g. Therefore, x € Z and [G, L, K| is closed, which implies that also
[%(GP + RK,) L, %(GP - RKp)}T is closed.

By Example 7.8 and Theorem 7.6 Lp|kcr 2 (GptRE) generates a contraction
semigroup. ’

The surjectivity of [i‘;] and Example 7.8 gives the surjectivity of %(GP—&—RKP).

Since (Vi,, Gp, ¥K,,) is a boundary triple for L, we have

2Re(Lpr, x)x,, = 2Re(Gp, Kpx)y, v, = 2Re(Gpz, Kpz) 12 (1))

1
= §(<R_1pr, Gpx)r2 + 2Re(Gpw, Kpx) 2 + (RKpw, Kpx) 12)

1
— 5((R_1pr, Gpx) 2 — 2Re(Gpw, Kpx) 12 + (RKpw, Kpw) 12)

= || %56y + RK )z}, - 145Gy - RE )z},

which makes = scattering energy preserving. u

Remark 8.6. Clearly, the previous proposition holds also true for the operator triple
[%(RKp +Gp) Ly %(RKP — Gp)}T and for G, and K, being swapped. More-
over, replacing L, by L, + J, where J € £(Xy) is dissipative, yields a scattering
passive system.

Hence, the port-Hamiltonian system with input 4 and output y described by the
equations

ﬁu(t () =mL (H(Oz(t o)LH + RL,(H(Q)x(t,Q)),, teR4, eIy,
(t,¢) = Z AL (£,Q)) + Po(H(Qz(t,0)), tEeR, (€,

V2y(t, Q) —7TL( Q)x(t,¢)) w — RL,(H(C)z(t,€)),, teRy,(ely,
O—ﬂL(H Q)x(t )LH’ teR,, (el
£(0,¢) = z0(C), (e,
is scattering passive and in particular well-posed, as the following corollary will
clarify. The mappings n;, and L, are used a little bit sloppy. There is always a

pointwise a.e. description for these mappings, but due to compact notation we use
mr, and L.
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Corollary 8.7. The system (8.3) can be interpreted as the scattering energy pre-
serving boundary control system

Ly | X R
L rmiy ||y

with the assumptions of Proposition 8.5 and S = 1. Replacing L, with L, + J for
a dissipative J € L(Xyy) yields a scattering passive boundary control system.

Corollary 8.8. With the setting of Proposition 8.5 the colligation
< Gp SLZ(Ty)
B[00
Kp SLZ(T1)
with solution space

Z={rx e H ' (Hpr,(L}},Q) x H(Ly,Q)) : G, Kpxr € SL2(T1)}
is 1mpedance energy preserving.

Proof. This is a direct consequence of Proposition 8.5 for R = 1. a

Note that the colligations in Corollary 8.4 and Corollary 8.8 are the same but the
solution spaces are slightly different. The colligation in Corollary 8.8 is in general
not necessarily a boundary control system.

Example 8.9 (Wave equation). Let p € L*°(f) be the mass density and T €
L>(Q)™*™ be the Young modulus, such that % € L>®(Q), T(O" =T(¢) and T(¢) >
61 for a § > 0 and almost every ¢ € Q. Then the wave equation

82

1 .
g8 = 5 v (T(©) gradw(t, ).

can be formulated as a port-Hamiltonian system by choosing the state variable
12}
(t,¢) = [f’(f)W“’C)]. Then the PDE looks like

grad w(t.()
o[ 0 aw][; 0],
“lgrad 0| |0 T|
=h =H
This is shown in section 3 of [9]. This is exactly the port-Hamiltonian system we
get from choosing L as in Example 3.3. From Example 6.2 and Example 6.6 we

know that the boundary operators are y and the extension of v - 5. Therefore,

VBu(t, Q) = v+ (D(Q) gradw(t,0)) + gw(t0),  tERy,CETy,

Srwlt.€) =~ div (1(©) grad w(t ). ——
Vay(t,) = v (T(Q) gradw(t, ) — sw(t,Q), 1R, CeD,

0= %w(t,q teRy,C €Ty,

can be modeled by a scattering passive and well-posed boundary control system, by
Corollary 8.7.



1000 NATHANAEL SKREPEK

Example 8.10 (Maxwell’s equations). Let 2 C R3 be as in Assumption 3.1 and
L = (L;)3_; be as in Example 3.4. In this example we have already showed Ly = rot
and L, f = v x f. The corresponding differential operator for the port-Hamiltonian

PDE is
10 Lyl | O rot
R)—[Lg' O]_{—rot 0]

We write the state as z = [R], where D,B € K3. We also want to introduce the
positive scalar functions €, u, g and r such that

1 1 1
€, — iy, —y g € L(Q) and 7, — € L*(T).
e T

1
Furthermore, we define the Hamiltonian density by H(¢) == [ g ! } , where each

0 Wy
block is a 3 x 3 matrix. At last we define [£] := H[B], so that we have the same
notation as in [16].

The projection on ran L, is given by g — (v X g) X v, therefore 7, is the extension
of g — (v X Y09) x v to H(L}', Q). The mapping 7 from [16] can be compared with
77, but is not exactly the same, since they have different domains and codomains.
We have 7, : HY(Q)3 — V, C L?(00Q)? and 71: H(rot, ) — Vy, is its extension, if
we change the norms in the domain and codomain of 7.. However, V; cannot be
embedded into L?(99)3.

Note that by Example A.4 neither 77 nor LI'* map even into L2(T'y), therefore
it is really necessary to use a quasi Gelfand triple instead of an “ordinary” Gelfand
triple.

The corresponding boundary control system is a model for Maxwell’s equations
in the following form

V2u(t, ¢) = r(Q)v(¢) x H(t,¢) + (v(¢) x E(t,¢)) x v(¢), teR4, (€T,
0

S:D(t.0) = 1ot H(t, ) — g(Q)E(t.C), tER, (€O,
%B(t,()z—rotE(t,C), teR,, (e,
V2y(t,¢) = r(Qv(¢) x H(t,{) — (v(¢) x B(t,Q)) x v(¢), teRy,(eTy,

0= (v(¢) x E(t,¢)) x v(), teRy,¢ €Ty,

and is scattering passive by Corollary 8.7, where we set J = [ ¢ 0] H.

Note that, following the trick in [16, Proposition 6.1], Gaufi’s law divD = p
is satisfied by simply defining p by this formula and Gauf’s law for magnetism
div B = 0 is automatically satisfied, if the initial condition satisfies it. This can be
seen, if we apply div on both sides of %,uH = —rot E and noting that divuH =
div B is constant in time (divrot = 0). This has to be understood in the sense of
distributions. However, for classical solutions this can also be understood in the
classical sense.
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Example 8.11 (Mindlin plate). Let Q C R? be as in Assumption 3.1. Let us
consider the differential operator P and the skew-symmetric matrix P, given by

00 0[0 0 0 & 8] 00 0 00000
00 0[d 0 8 0 0 00 0 00010
00 0[0 & 0 0 0 00 0 000O0GO°1
B |00 00 0 0 0 0|, |00 0 00000
“10 0 8|0 0o 0 0 0 oo 0o o0000oO0
0 & 0,]0 0 0 0 0 00 0 00000
& 0 0[]0 0 0 0 0 0 -1 0 00000
(% 0 0|0 0 0 0 0 | 0 0 10000 0

It is easy to derive the corresponding P = (P;)%; and L = (L;)%_;. We define a
Hamiltonian density by

L0 0 000 0 07
P
0%000000
oop%ooooo
-1 0 0 0 0 0
o0 o Dy ool
0 0 0 00
0O 0 0 0 0 0
_ooooooDS_

where p, h are strictly positive functions, D({) is a coercive 3 x 3 matrix and
D,(¢) is a coercive 2 x 2 matrix, such that all conditions on H in Definition 4.1 are
satisfied. We write the state variable = as

— h® h? i
o= |phv PIgW1 pPzW2 K11 K22 Ki2 71,3 723 >

where we stick to the notation in [2] except that we renamed the coordinates z, y
and z as 1, 2 and 3. Furthermore, we have

.
e=Ha=[v wi wy My My My Q1 Q2 .

We don’t want to go into details about the physical meaning of these state variables.
We just want to make it easier to translate the results into the notation of [2]. So
the port-Hamiltonian PDE

%x = (P + Py)Hx looks like %a = (B + Pye.

The corresponding boundary operator is

fi | fa

0 0 0 v w]l|f v {f}
Lf=lrn 0 »n 0 0| |fs|= ”[H
0 Vg U1 0 0 f4 fs

5 v [f;]

Since ||v(¢)|| = 1, at least v1(¢) # 0 or v2(¢) # 0. This can be used to show that
ran L, = L?(082)3. Therefore, 71, is the extension of the boundary trace operator
Yo to H(L}Y, Q).
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Since there is no direct physical meaning to the boundary variables

v &)
Q@ v
[O Ll,]e: y[%i;} and [’R’L O]e: wy |,
: W
| M2
[32:]
. . 10 0 .
we define 7 :== [‘V’f ] and apply the unitary transformation .S = [0 2 Vz} to obtain
—vg vy
Ql}
l/ .
Q. {Qz v v
M,,| =S| [ﬁ} and  |w, | = ()" {wn |,
M, M1:2 Wy =5 W2
v-[3ez]
which have a physical interpretation; see [2]. Hence, by Corollary 8.8 the system
T
u=[Q, My, M,,| , on Ry xI'y,
0
aa = (P + Py)e, on Ry x £,
Y= [v Wy, wn]T, on Ry xTI'y,
0= [v w, wn]T, on Ry x Ty,

for the Mindlin plate is impedance energy preserving, which is exactly the system
in [2].

Appendix A. Counter examples and technical lemmas. The next example
shows that it is possible to have item (i) and item (ii) of a “boundary triple” for
an operator A (Definition 2.1) without A being the adjoint of a skew-symmetric
operator. Moreover, it shows that in this situation Lemma 2.2 does not hold. This
demonstrates the importance of A being the adjoint of a skew-symmetric operator
in the definition.

0

d
Example A.1. Let A = [d Cg} be an operator on L?(0,1)? with dom A =
ae

H'(0,1)2. By Remark 3.7 the operator A is the adjoint of a skew-symmetric oper-
ator. Integration by parts yields

o= [ ] 5o [ ) 4]

Z/O (fom +f{92+f19§+f291)d§=f291‘1+f192‘;
= f2(1)g1(1) — f2(0)g1(0) + f1(1)g2(1) — f1(0)g=2(0)

- <[—fff§3>] E@D ¥ < ho) | 2(<3>]>

Baof Big Blf Bag
Defining B, f = {Jf‘g})ﬂ and By f = [ j;;;g)} yields

(Af,9) + (f, Ag) = (B1f, B2g) + (Ba2f, B1g). (A1)
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The mapping [g;] : dom A — R* is surjective (this can be seen by choosing f; and
f2 to be linear interpolations). So (R?, By, Bs) is a boundary triple for A.

We define A as the restriction of A on H{ll}:O(O7 1) x H%O}:{l}(o, 1), where

H{11}=O(07 1) = {f € Hl(oa 1) : f(l
Hioy—(13(0,1) = {f € H'(0,1): f(0

[
- O
[

—
e

I}

=

Q.

Therefore, we can reformulate (A.1) for f,g € dom A

(Af,g) + (f, Ag) = — £1(0)g2(0) + f2(0)(—g1(0))

By defining Fy f := — f1(0) and F5f := f2(0) we again have that [%] : dom A — R?
is surjective. However A is not the adjoint of a skew-symmetric operator. If it were,
then (R?, F, F») would be a boundary triple for A and

A _ A _ %
AT =-A ker Finker Fy — jél‘Hé(O,l)2 =A%

which is not true since A is certainly not dense in A. In fact, with the boundary
triple for A we get that the adjoint of A is 7A|H%0}={1}(0’1)XH%0}=0(0’1)'
Lemma A.2. Let (x,)nen be a sequence in a normed vector space X that con-
verges w.r.t. the weak-x topology to an xg € X. Then (n)nen is bounded i.e.
supen|lznlx < oo

Proof. Let ¢ denote the canonical embedding from X into X” that maps z to
(x,.)x,x. Then, by assumption, for every fixed ¢ € X' (vzn)(d) — (tz0)(¢),
in particular sup,,cy|(¢@n)(@)| < co. The principle of uniform boundedness yields
SUp,en||t@n|x» < 400. Since [[wz|x» = ||z||x for every x € X, this proves the
assertion. a

Lemma A.3. Let (x,)nen be a weak convergent sequence in a Hilbert space H with
limit x. Then there exists a subsequence (Ty(y))ren such that

1 N
k=1

Proof. We assume that z = 0. For the general result we just need to replace x,, by
Ty — .

We define the subsequence inductively: n(1) = 1 and for k > 1 we choose n(k)
such that

1
(Zn(k)> T < T for all j < k.

This is possible, because (z;,),en converges weakly to 0. Note that in Hilbert spaces
the weak topology and the weak-* topology are the same. Hence, by Lemma A.2
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sup,enl|zn|| < C. This yields

1 N 2 1 N N
1 & 1 al
=2 Z\|%(k)||2 + 52 Z > 2Re(@n(k), Tngj))
k=1 G=1 k=j+1
1 2 & 1
2

Example A.4. Let Q = (0,1)% and F: Q — R be defined by

F(x) = - H% = (2f + a5 +a3) 7.

Then we define f = grad F', which is

— 5w (2} + 23 + 23) "
flx) = | —FHaz(a?+a3 +23)~7°
—ow3(2} + a3 + 23)

Hence, rot f = rot grad F' = 0. We will show that f is in L?(Q)?:

_ 16
/||f ||2dx*/2100 x? (23 + 23 + 22) 12/5d:1::ﬁ/(x1+x2+9:3) 75 da

3 V3
< / (@f + a3 +a3) " dx = 27(/ / =512 cos 0 dr df
B 3(0) -5 J0

V3 V3
= 47r/ r=* dr = 4n5r/? < +4o00.
0

0

Therefore, f is even in H(rot, Q). Let v denote the normal vector on 9. Then we
show that v x f|,, is not in L*(8)*: Note that v(¢) = [_81} on [0,1] x [0,1] x {0}.
Therefore,

— 3G + )
U)X FQ) = | GG+ for ¢€[0,1] x[0,1] x {0}
0

and consequently

/ 1(¢) x f(OII5d¢ 2/ [(¢) x (O3 d¢
a0 [0,1]x[0,1]x {0}

16 _7
=100 & +&5)77de.
100 [O,l]x[O,l]( 1T&)
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Since [0, 1] x [0, 1] contains the circular sector with arc 7 and radius 1, we further
have (by applying polar coordinates)

167-[ 1 14 167—[ ! 9
> O [ spgp = 2T g
—1002/()T rer 1002/07" "

Hence, f € H(rot,Q), but v x f|, ¢ L*(99)3. Since

—15G (G + )
W(C) x F(Q) x () = | ~15¢(G +¢)~7° | for ¢€[0,1] x[0,1] x {0},
0

we also have (v x f|(,m) x v ¢ L2(00)3.
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