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Abstract. We consider a port-Hamiltonian system on an open spatial domain

Ω ⊆ Rn with bounded Lipschitz boundary. We show that there is a boundary

triple associated to this system. Hence, we can characterize all boundary condi-
tions that provide unique solutions that are non-increasing in the Hamiltonian.

As a by-product we develop the theory of quasi Gelfand triples. Adding “natu-

ral” boundary controls and boundary observations yields scattering/impedance
passive boundary control systems. This framework will be applied to the wave

equation, Maxwell’s equations and Mindlin plate model. Probably, there are

even more applications.

1. Introduction. The aim of this paper is to develop a port-Hamiltonian frame-
work on multidimensional spatial domains that justifies existence and uniqueness
of solutions. Those systems can be described by the following equations

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi
Pi
(
H(ζ)x(t, ζ)

)
+ P0

(
H(ζ)x(t, ζ)

)
, ζ ∈ Ω, t ≥ 0,

x(0, ζ) = x0(ζ), ζ ∈ Ω,

where x is the state, Pi and P0 are matrices, H is the Hamiltonian density, and
Ω is an open subset of Rn with bounded Lipschitz boundary. We will restrict

ourselves to the case, where the matrices Pi have the block shape
[

0 Li
LH
i 0

]
for i ∈

{1, . . . , n}. We also introduce “natural” boundary controls and observations which
make the system a scattering passive (energy preserving) or impedance passive
(energy preserving) boundary control system. This PDE perfectly matches the
description of port-Hamiltonian systems in one spatial dimension in [8], if we set

n = 1. The additional restriction P1 =
[

0 L1

LH
1 0

]
is not needed in [8], since the

boundary of a line automatically satisfies certain symmetry properties. We decided
to not demand an analogous symmetry from Ω in the multidimensional case, because
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it did not seem very restrictive to ask for Pi =
[

0 Li
LH
i 0

]
as all the examples satisfy

this anyway. However, it is probably possible to drop this restriction and ask instead
for certain a symmetry of the boundary.

The port-Hamiltonian formulation has proven to be a powerful tool for the mod-
eling and control of complex multiphysics systems. An introductory overview can
be found in [14]. For one-dimensional spatial domains concerns about existence and
uniqueness of solutions are covered in [8].

Chapter 8 of the Ph.D. thesis [15] also regards such port-Hamiltonian systems
that have multidimensional spatial domains, but the results demand very strong
assumptions on the boundary operators (they have to map into H1/2(∂Ω)k and
its dual respectively), which are in case of Maxwell’s equations and the Mindlin
plate model not satisfied, as Example A.4 shows for Maxwell’s equations. With the
following approach we will overcome these limits.

The strategy is to find a boundary triple associated to the differential operator.
The multidimensional integration by parts formula already suggests possible opera-
tors for a boundary triple, but unfortunately these operators cannot be extended to
the entire domain of the differential operator. Hence, we need to adapt the codomain
of these boundary operators, which will lead to the construction of suitable bound-
ary spaces for this problem. These boundary spaces behave like a Gelfand triple
with the original codomain as pivot space, but lack of a chain inclusion.

Up to the author’s best knowledge there is no earlier theory about this setting.
So we will develop the notion of quasi Gelfand triples in section 5, which equips us
with the tools to state the boundary condition in terms of the pivot space instead of
the artificially constructed boundary spaces (Theorem 7.6). Section 5 can be read
isolated from the rest.

One can think of using a quasi boundary triple (G,Γ0,Γ1) (see [1]) to overcome
the extension problem of the boundary mappings, but unfortunately the condition
ker Γ0 is self-adjoint (or in this setting skew-adjoint) is in general not satisfied for
our purpose.

The approach to the wave equation in [9] perfectly fits the framework presented
in this paper. In fact, many ideas from [9] are generalized in this work. Also
Maxwell’s equations can be formulated as such a port-Hamiltonian system and the
results in [16] can also be derived with the tools of this paper. Moreover, this theory
can be applied on the model of the Mindlin plate in [2, 10]. In section 8 we give
examples of how this framework can be applied to these three PDEs.

Symbols.

Symbol Meaning Page

Br(ζ0) {ζ ∈ X : ‖ζ − ζ0‖X < r} ball with radius r and center ζ0 in
a normed space X

D(Ω) set of C∞(Ω) functions with compact support 969

D′(Ω) (anti)dual space of D(Ω) 969

D(Rn)
∣∣
Ω

{f
∣∣
Ω

: f ∈ D(Rn)} 969

ν outward pointing normed normal vector on ∂Ω 969

γ0 H1(Ω, X)→ L2(∂Ω, X); extension of f 7→ f
∣∣
∂Ω

969

L∂
∑n
i=1 ∂iLi a differential operator from L2(Ω)m2 to L2(Ω)m1 969
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LH
∂

∑n
i=1 ∂iL

H
i 969

H(L∂ ,Ω) {f ∈ L2(Ω)m2 : L∂f ∈ L2(Ω)m1} maximal domain of L∂ 969

H0(L∂ ,Ω) The closure of D(Ω)m2 in H(L∂ ,Ω) 969

HΓ0
(LH
∂ ,Ω) ker π̄Γ0

L 989

Lν
∑n
i=1 νiLi : L

2(∂Ω)m2 → L2(∂Ω)m1 969

L̄Γ
ν H(L∂ ,Ω)→ V ′L,Γ; extension of 1ΓLνγ0 on H(L∂ ,Ω) 989

L̄ν L̄∂Ω
ν : H(L∂ ,Ω)→ V ′L; extension of Lνγ0 on H(L∂ ,Ω) 990

L2
π(Γ) ran1ΓLνγ0 ⊆ L2(Γ)m1 987

πΓ
L H1(Ω)m1 → L2

π(Γ); projection on L2
π(Γ) composed with γ0 987

πL π∂Ω
L : H1(Ω)m1 → L2(∂Ω)m1 987

π̄Γ
L H(LH

∂ ,Ω)→ VL,Γ; extension of πΓ
L on H(LH

∂ ,Ω) 988

π̄L π̄∂Ω
L : H(LH

∂ ,Ω)→ VL 988

MΓ ranπΓ
L ⊆ L2

π(Γ) 988

VL,Γ1 ran π̄L
∣∣
HΓ0

(LH
∂ ,Ω)

989

VL VL,∂Ω 989

H Hamiltonian density 976

XH L2(Ω)m equipped with 〈H., .〉L2(Ω)m ; the state space 976[
(Hx)

LH

(Hx)L

]
splitting of Hx w.r.t. the dimensions of L 992

X0 Hilbert space; pivot space of a quasi Gelfand triple 977

D̃+ dense subspace of X0 with an alternative inner product 977

D−

{
g ∈ X0 : supg∈D̃+\{0}

|〈g,f〉X0
|

‖f‖X+
< +∞

}
978

2. Boundary triple. In this section we state the most important properties of
boundary triples for skew-symmetric operators for this work. More details can be
found in [6, chapter 3] and [9].

A linear relation T from a vector space X to a vector space Y is a linear subspace
ofX×Y . Clearly, every linear operator is also a linear relation (we do not distinguish
between a function and its graph). We will use the following notation

kerT := {x ∈ X : (x, 0) ∈ T}, ranT := {y ∈ Y : ∃x : (x, y) ∈ T},
mulT := {y ∈ Y : (0, y) ∈ T}, domT := {x ∈ X : ∃y : (x, y) ∈ T}.

Thus, T is single-valued, if mulT = {0}. The closure T of a linear relation T is the
closure in X × Y . Note that every linear relation is closable. Also every operator
has a closure as a linear relation, but its closure can be multi-valued. Therefore,
showing mulT = {0} is necessary, even if mulT = {0}. For an additional linear
relation S from Y to another vector space Z we define the composition ST as

ST := {(x, z) ∈ X × Z : ∃y ∈ Y such that (x, y) ∈ T and (y, z) ∈ S}.

For a linear relation T from a Hilbert space X to a Hilbert space Y the adjoint
relation is defined by

T ∗ := {(u, v) ∈ Y ×X : 〈u, y〉Y = 〈v, x〉X for all (x, y) ∈ T}
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and the following holds true

kerT ∗ = (ranT )⊥, mulT ∗ = (domT )⊥ and T ∗ =
[

0 IY
−IX 0

]
T⊥,

where
[

0 IY
−IX 0

]
T := {(y,−x) : (x, y) ∈ T} and T⊥ is the orthogonal complement

in X × Y . A linear relation T on a Hilbert space H (from H to H) is dissipative, if
Re〈x, y〉H ≤ 0 for every (x, y) ∈ T and maximal dissipative, if additionally there is
no proper dissipative extension of T . The linear relation T is (maximal) accretive,
if −T := {(x,−y) : (x, y) ∈ T} is (maximal) dissipative. More details can be found
in [4].

Definition 2.1. Let A0 be a densely defined, skew-symmetric, and closed operator
on a Hilbert space X. By a boundary triple for A∗0 we mean a triple (B, B1, B2)
consisting of a Hilbert space B, and two linear operators B1, B2 : domA∗0 → B such
that

(i) the mapping
[
B1

B2

]
: domA∗0 → B × B, x 7→

[
B1x
B2x

]
is surjective, and

(ii) for x, y ∈ domA∗0 there holds

〈A∗0x, y〉X + 〈x,A∗0y〉X = 〈B1x,B2y〉B + 〈B2x,B1y〉B. (2.1)

The operator A0 can be recovered by restricting −A∗0 to kerB1 ∩ kerB2 as the
next lemma will show. However, if A∗0 satisfied item (i) and item (ii) but wasn’t
the adjoint of a skew-symmetric operator, then the next lemma would not hold
as Example A.1 demonstrates. Consequently, Proposition 2.3 would also not hold.
This should highlight the importance of A∗0 being the adjoint of a skew-symmetric
operator in the definition of a boundary triple.

Lemma 2.2. Let A0 be a densely defined, skew-symmetric, and closed operator
on a Hilbert space X and (B, B1, B2) be a boundary triple for A∗0. Then A0 =
−A∗0

∣∣
kerB1∩kerB2

.

A proof can be found in [6, p. 155]. The following result is Theorem 2.2 from [9].

Proposition 2.3. Let A0 be a skew-symmetric operator and (B, B1, B2) be a bound-
ary triple for A∗0. Consider the restriction A of A∗0 to a subspace D containing

kerB1 ∩ kerB2. Define a subspace of B × B by C :=

[
B1

B2

]
D. Then the following

claims are true:

(i) The domain of A can be written as

domA = D =

{
d ∈ domA∗0 :

[
B1

B2

]
d ∈ C

}
.

(ii) The operator closure of A is A∗0 restricted to

D̃ :=

{
d ∈ domA∗0 :

[
B1

B2

]
d ∈ C

}
,

where C is the closure in B2. Therefore, A is closed if and only if C is closed.
(iii) The adjoint A∗ is the restriction of −A∗0 to D′, where

D′ :=

{
d′ ∈ domA∗0 :

[
B1

B2

]
d′ ∈

[
0 I
I 0

]
C⊥︸ ︷︷ ︸

=−C∗

}
.
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(iv) The operator A is (maximal) dissipative if and only if C is a (maximal) dissi-
pative relation. It also holds that A is (maximal) accretive, if and only if C is
(maximal) accretive.

3. Differential operators. Before we start analyzing port-Hamiltonian systems
we will make some observation about the differential operators that will appear in
the PDE. In this section we take care of all the technical details of these differential
operators. Since it doesn’t really make a difference whether we use the scalar field
R or C we will use K ∈ {R,C} for the scalar field. The following assumption will
be made for the rest of this work.

Assumption 3.1. Let m1,m2, n ∈ N, Ω ⊆ Rn be open with a bounded Lip-
schitz boundary, and L = (Li)

n
i=1 such that Li ∈ Km1×m2 for all i ∈ {1, . . . , n}.

Corresponding to L we also have LH := (LH
i )ni=1, where LH

i denotes the complex
conjugated transposed (Hermitian transposed) matrix.

We will write D(Ω) for the set of all C∞(Ω) functions with compact support in
Ω. Its dual space, the space of distributions, will be denoted by D′(Ω) (details on
distributions can be found in [7]). Moreover, we will write D(Rn)

∣∣
Ω

for {f
∣∣
Ω

: f ∈
D(Rn)}. We will use ∂i as a short notation for ∂

∂ζi
. We denote the boundary trace

operator by γ0 : H1(Ω, X)→ L2(∂Ω, X) for a Banach space X.
Sometimes it can be confusing to pay attention to the antilinear structure of an

inner product of a Hilbert space, when switching between the inner product and the
dual pairing. Thus, for the sake of clarity we will always consider the antidual space
instead of the dual space, which is the space of all continuous antilinear mappings
from the topological vector space into its scalar field. Hence, both the inner product
and the (anti)dual pairing is linear in one component and antilinear in the other.
So also D′(Ω) is actually the antidual space of D(Ω).

Sometimes we will write 〈ψ, φ〉D′,D instead of 〈ψ, φ〉D′(Ω)k,D(Ω)k , if Ω and k ∈ N
are clear or 〈ψ, φ〉D′(Ω),D(Ω), if only k ∈ N is clear.

Definition 3.2. Let L be as in Assumption 3.1. Then we define

L∂ :=

n∑
i=1

∂iLi and LH
∂ := (LH)∂ =

n∑
i=1

∂iL
H
i

as operators from D′(Ω)m2 to D′(Ω)m1 and from D′(Ω)m1 to D′(Ω)m2 , respectively.
Furthermore, we define the space

H(L∂ ,Ω) :=
{
f ∈ L2(Ω,Km2) : L∂f ∈ L2(Ω,Km1)

}
.

This space is endowed with the inner product

〈f, g〉H(L∂ ,Ω) := 〈f, g〉L2(Ω,Km2 ) + 〈L∂f, L∂g〉L2(Ω,Km1 ).

The space H0(L∂ ,Ω) is defined as D(Ω)m2
‖.‖H(L∂,Ω)

. We denote the outward pointing
normed normal vector on ∂Ω by ν and its i-th component by νi. Moreover, we define

Lν :=

n∑
i=1

νiLi :

{
L2(∂Ω,Km2) → L2(∂Ω,Km1),

f 7→
∑n
i=1 νiLif,

and LH
ν := (LH)ν .
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The operator L∂ can also be regarded as a linear unbounded operator from
L2(Ω,Km2) to L2(Ω,Km1) with domain H(L∂ ,Ω). In fact this is what we will
do most of the time. The same goes for LH

∂ with domain H(LH
∂ ,Ω). Since ν ∈

L∞(∂Ω,Rn) the mappings Lν and LH
ν are well-defined and bounded.

For convenience we will write H1(Ω)k instead of H1(Ω,Kk) and L2(Ω)k instead
of L2(Ω,Kk) for k ∈ N.

Clearly, D(Rn)m2
∣∣
Ω
⊆ H1(Ω)m2 ⊆ H(L∂ ,Ω) and D(Rn)m1

∣∣
Ω
⊆ H1(Ω)m1 ⊆

H(LH
∂ ,Ω).

Example 3.3. Let us regard the following matrices

L1 =
[
1 0 0

]
, L2 =

[
0 1 0

]
, and L3 =

[
0 0 1

]
.

Then we obtain the corresponding differential operators

L∂ =
[
∂1 ∂2 ∂3

]
= div and LH

∂ =

∂1

∂2

∂3

 = grad .

The corresponding operator Lν that acts on L2(∂Ω) can be written as an inner
product

Lνf =
[
ν1 ν2 ν3

] f1

f2

f3

 = ν · f.

Clearly the previous example can be extended to any finite dimension.

Example 3.4. The following matrices will construct the rotation operator.

L1 =

0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , and L3 =

0 −1 0
1 0 0
0 0 0

 .
In this example we have LH

i = −Li. Furthermore, the corresponding differential
operator is

L∂ =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 = rot = −LH
∂ .

The corresponding operator Lν that acts on L2(∂Ω) can be written as a cross
product

Lνf =

 0 −ν3 ν2

ν3 0 −ν1

−ν2 ν1 0

f1

f2

f3

 = ν × f.

Lemma 3.5. The operator L∂ with domL∂ = H(L∂ ,Ω) is a closed operator from
L2(Ω)m2 to L2(Ω)m1 and H(L∂ ,Ω) endowed with the inner product 〈., .〉H(L∂ ,Ω) is a
Hilbert space.

Note that for f ∈ D′(Ω)m2 and φ ∈ D(Ω)m1 we have

〈L∂f, φ〉D′(Ω)m1 ,D(Ω)m1 =

n∑
i=1

〈∂iLif, φ〉D′(Ω)m1 ,D(Ω)m1

=

n∑
i=1

〈f,−∂iLH
i φ〉D′(Ω)m2 ,D(Ω)m2 =〈f,−LH

∂ φ〉D′(Ω)m2 ,D(Ω)m2 .
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Proof. Let
(
(fk, L∂fk)

)
k∈N be a sequence in L∂ that converges to a point (f, g) ∈

L2(Ω)m2 × L2(Ω)m1 . For an arbitrary φ ∈ D(Ω)m1 we have

〈g, φ〉D′(Ω)m1 ,D(Ω)m1 = lim
k→∞

〈L∂fk, φ〉D′(Ω)m1 ,D(Ω)m1

= lim
k→∞

〈fk,−LH
∂ φ〉D′(Ω)m1 ,D(Ω)m1

= 〈f,−LH
∂ φ〉D′(Ω)m2 ,D(Ω)m2

= 〈L∂f, φ〉D′(Ω)m1 ,D(Ω)m1 ,

which implies g = L∂f . Since g is also in L2(Ω)m1 , we conclude that L∂ is closed.
Hence, domL∂ = H(L∂ ,Ω) endowed with the graph norm of L∂ , which is induced
by 〈., .〉H(L∂ ,Ω), is a Hilbert space. q

Lemma 3.6. The adjoint of L∂ with domL∂ = H(L∂ ,Ω) (as an unbounded op-
erator/linear relation from L2(Ω)m2 to L2(Ω)m1) is given by L∗∂ g = −LH

∂ g for
g ∈ domL∗∂ ⊆ H(LH

∂ ,Ω), i.e. L∗∂ ⊆ −LH
∂ .

Proof. For an arbitrary g ∈ domL∗∂ and an arbitrary φ ∈ D(Ω)m2 we have

〈L∗∂ g, φ〉D′,D = 〈L∗∂ g, φ〉L2 = 〈g, L∂φ〉L2 = 〈g, L∂φ〉D′,D = 〈−LH
∂ g, φ〉D′,D.

Therefore, L∗∂ g = −LH
∂ g and L∗∂ g ∈ L2(Ω)m2 implies LH

∂ g ∈ L2(Ω)m2 . Consequently,
domL∗∂ ⊆ H(LH

∂ ,Ω). q

Remark 3.7. If L contains only Hermitian matrices (LH
i = Li), then LH

∂ = L∂ and
L∗∂ is skew-symmetric by the previous lemma.

The next result is an integration by parts version for L∂ . This will be helpful
to construct a boundary triple for the differential operator in the port-Hamiltonian
PDE.

Lemma 3.8. Let f ∈ H1(Ω)m2 and g ∈ H1(Ω)m1 . Then we have

〈L∂f, g〉L2(Ω)m1 + 〈f, LH
∂ g〉L2(Ω)m2 = 〈Lνγ0f, γ0g〉L2(∂Ω)m1

= 〈γ0f, L
H
ν γ0g〉L2(∂Ω)m2 .

(3.1)

Proof. Let f ∈ D(Rn)m2
∣∣
Ω

and g ∈ D(Rn)m1
∣∣
Ω

. By the definition of L∂ and LH
∂ ,

and the linearity of the scalar product we can write the left-hand-side of (3.1) as∫
Ω

n∑
i=1

〈∂iLif, g〉+ 〈f, ∂iLH
i g〉dλ =

∫
Ω

n∑
i=1

〈∂iLif, g〉+ 〈Lif, ∂ig〉dλ,

where λ denotes the Lebesgue measure. By the product rule for derivatives and
Gauß’s theorem (divergence theorem) (see [7, eq. (3.1.6)] or [13, Remark 13.7.2])
this is equal to∫

Ω

n∑
i=1

∂i〈Lif, g〉dλ =

∫
∂Ω

n∑
i=1

νiγ0〈Lif, g〉dµ =

∫
∂Ω

〈Lνγ0f, γ0g〉dµ,

where ν denotes the outward pointing normed normal vector on ∂Ω and µ denotes
the surface measure of ∂Ω. By density we can extend this equality for f ∈ H1(Ω)m2

and g ∈ H1(Ω)m1 . q

Corollary 3.9. Let f ∈ H1(Ω)m2 and g ∈ H1(Ω)m1 . Then we have∣∣∣〈Lνγ0f, γ0g〉L2(∂Ω)m1

∣∣∣ ≤ ‖f‖H(L∂ ,Ω)‖g‖H(LH
∂ ,Ω).
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Proof. Lemma 3.8, the triangular inequality and Cauchy Schwarz’s inequality yield∣∣∣〈Lνγ0f, γ0g〉L2(∂Ω)m1

∣∣∣ ≤ ∣∣〈L∂f, g〉L2(Ω)m1

∣∣+
∣∣〈f, LH

∂ g〉L2(Ω)m2

∣∣
≤ ‖L∂f‖L2(Ω)m1 ‖g‖L2(Ω)m1 + ‖f‖L2(Ω)m2‖LH

∂ g‖L2(Ω)m2

≤
√
‖L∂f‖2L2 + ‖f‖2L2

√
‖g‖2L2 + ‖LH

∂ g‖2L2

= ‖f‖H(L∂ ,Ω)‖g‖H(LH
∂ ,Ω). q

Note that Ω = Rn satisfies the assumptions in Assumption 3.1. Hence, all the
previous results hold true for Ω = Rn.

Our next goal is to show that D(Rn)m2
∣∣
Ω

is dense in H(L∂ ,Ω); see Theorem 3.18.
In order to archive this we will present some regularization and continuity results.
In particular the density is needed to extend the integration by parts formula
(Lemma 3.8) for f ∈ H(L∂ ,Ω) and g ∈ H(LH

∂ ,Ω).

Lemma 3.10. The mapping ι : H(L∂ ,Rn)→ H(L∂ ,Ω), f 7→ f
∣∣
Ω

is well-defined and

continuous for any open set Ω ⊆ Rn. In particular, L∂(f
∣∣
Ω

) = (L∂f)
∣∣
Ω

. Moreover,

if fk → f in H(L∂ ,Rn), then fk → f in H(L∂ ,Ω).

Hence, we can always regard an f ∈ H(L∂ ,Rn) as an element of H(L∂ ,Ω), espe-
cially when supp f ⊆ Ω – then it is also possible to recover f from f

∣∣
Ω

.

Proof. If f ∈ H(L∂ ,Rn), then f ∈ L2(Rn)m2 and L∂f ∈ L2(Rn)m1 . Hence, it is
easy to see that ‖f

∣∣
Ω
‖L2(Ω) ≤ ‖f‖L2(Rn) and ‖(L∂f)

∣∣
Ω
‖L2(Ω) ≤ ‖L∂f‖L2(Rn). Note

that D(Ω) ⊆ D(Rn), and that for g ∈ L2(Rn) and φ ∈ D(Ω)

〈g, φ〉D′(Rn),D(Rn) = 〈g, φ〉L2(Rn) =
〈
g
∣∣
Ω
, φ
〉
L2(Ω)

=
〈
g
∣∣
Ω
, φ
〉
D′(Ω),D(Ω)

.

Hence, for f ∈ H(L∂ ,Rn) and φ ∈ D(Ω) we have〈
L∂(f

∣∣
Ω

), φ
〉
D′(Ω),D(Ω)

=
〈
f
∣∣
Ω
,−LH

∂ φ
〉
D′(Ω),D(Ω)

= 〈f,−LH
∂ φ〉D′(Rn),D(Rn)

= 〈L∂f, φ〉D′(Rn),D(Rn)

=
〈
(L∂f)

∣∣
Ω
, φ
〉
D′(Ω),D(Ω)

,

which implies L∂(f
∣∣
Ω

) = (L∂f)
∣∣
Ω

in D′(Ω). Since the latter is in L2(Ω), we conclude

f
∣∣
Ω
∈ H(L∂ ,Ω). Consequently, ι is well-defined and ‖ιf‖H(L∂ ,Ω) ≤ ‖f‖H(L∂ ,Rn) by

the norm estimates from the beginning. Since ι is linear this implies the continuity
of ι and in turn the last assertion of the lemma. q

Lemma 3.11. Let Dη : L2(Rn)k → L2(Rn)k be the mapping defined by (Dηf)(ζ) :=
f(ηζ), where η ∈ (0,+∞) and k ∈ N. Then Dη converges in the strong operator
topology to I for η → 1.

Proof. For φ ∈ D(Rn)k we will show that η 7→ Dηφ from (0,+∞) to L2(Rn)k is
continuous:

‖Dη1
φ−Dη2

φ‖2L2 =

∫
Rn
‖φ(η1ζ)− φ(η2ζ)‖2Kk dλ(ζ)

=
1

η2n
2

∫
Rn

∥∥∥φ(η1

η2
ζ
)
− φ(ζ)

∥∥∥2

Kk
dλ(ζ)→ 0 for η2 → η1
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by Lebesgue’s dominated convergence theorem, where λ denotes the Lebesgue mea-
sure. For f ∈ L2(Rn)k there exists a sequence (φm)m∈N of D(Rn)k functions that
converges to f (w.r.t. ‖.‖L2). Hence,

‖Dηφm −Dηf‖L2 =
1

ηn
‖φm − f‖L2

and Dηφm converges uniformly in η ∈ (ε,+∞), ε > 0 to Dηf for m → ∞. Con-
sequently η 7→ Dηf is also continuous from (ε,+∞) to L2(Ω)k and in particular
Dηf → f for η → 1. q

Definition 3.12. A set O ⊆ Rn is strongly star-shaped with respect to ζ0, if for
every ζ ∈ O the half-open line segment {θ(ζ−ζ0)+ζ0 : θ ∈ [0, 1)} is contained in O.
We call O strongly star-shaped, if there is a ζ0 such that O is strongly star-shaped
with respect to ζ0.

Note that this is equivalent to

θ(O − ζ0) + ζ0 ⊆ O for all θ ∈ [0, 1).

Lemma 3.13. Let f ∈ H(L∂ ,Rn) and ζ0 ∈ Rn. Furthermore, let fθ(ζ) := f( 1
θ (ζ −

ζ0) + ζ0) for θ ∈ (0, 1) and a.e. ζ ∈ Rn. Then fθ ∈ H(L∂ ,Rn) and fθ → f in
H(L∂ ,Rn) as θ → 1. If there exists a strongly star-shaped set O with respect to the
previous ζ0 such that supp f ⊆ O, then supp fθ ⊆ O for θ ∈ (0, 1).

Proof. Let f ∈ H(L∂ ,Rn) and α(ζ) := 1
θ (ζ − ζ0) + ζ0. Then it is easy to see that

fθ = f ◦ α and fθ ∈ L2(Rn)m2 . By change of variables we have

〈L∂(f ◦ α), φ〉D′(Rn),D(Rn) = 〈f,−(LH
∂ φ) ◦ α−1θn〉L2(Rn)

=
〈
f,−

n∑
i=1

LH
i ∂i

(
φ ◦ α−1 1

θ

)
θn
〉
L2(Rn)

=
〈
f,−LH

∂

(1

θ
φ ◦ α−1

)
θn
〉
L2(Rn)

=
〈1

θ
(L∂f) ◦ α, φ

〉
L2(Rn)

=
〈1

θ
(L∂f) ◦ α, φ

〉
D′(Rn),D(Rn)

.

Therefore, L∂fθ = 1
θ (L∂f)θ and fθ ∈ H(L∂ ,Rn). We can also write fθ as

Tζ0D 1
θ
T−ζ0f , where Tξ : L2(Rn)m2 → L2(Rn)m2 is the translation mapping f 7→

f(. + ξ) and Dη : L2(Rn)m2 → L2(Rn)m2 is the mapping from Lemma 3.11. Since
Tξ is bounded and Dη converges strongly to I as η → 1, we conclude fθ → f in
L2(Rn)m2 as θ → 1 and L∂fθ = 1

θ (L∂f)θ → L∂f in L2(Rn)m1 as θ → 1. Hence,
fθ → f in H(L∂ ,Rn).

Let O be strongly star-shaped with respect to ζ0 and supp f ⊆ O. Then for
θ ∈ (0, 1)

supp fθ = θ(supp f − ζ0) + ζ0 ⊆ θ(O − ζ0) + ζ0 ⊆ O. q

Remark 3.14. If f ∈ H(L∂ ,Ω) and ψ ∈ D(Rn)
∣∣
Ω

, then by the product rule for

distributional derivatives also ψf ∈ H(L∂ ,Ω) and L∂(ψf) = ψL∂f +
∑n
i=1(∂iψ)Lif

(see [7, equation (3.1.1)’]).

Lemma 3.15. For every f ∈ H(L∂ ,Rn) exists a sequence (fk)k∈N in H(L∂ ,Rn)
with compact support supp fk ⊆ supp f that converges to f in H(L∂ ,Rn).
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Proof. Let ψ ∈ C∞(Rn,R) be such that

ψ(ζ) ∈


{1}, if ‖ζ‖ ≤ 1,

[0, 1], if 1 < ‖ζ‖ < 2,

{0}, if ‖ζ‖ ≥ 2.

Then fk := ψ( .k )f ∈ L2(Rn)m2 and fk → f in L2. By the previous remark we

have L∂fk = ψ( .k )L∂f + 1
k

∑n
i=1(∂iψ)( 1

k .)Lif and therefore fk ∈ H(L∂ ,Rn). Since
‖∂iψ‖∞ <∞ and ‖Lif‖L2 ≤ ‖Li‖‖f‖L2 <∞, we have L∂fk → L∂f as ψ( .k )L∂f →
L∂f in L2(Rn)m2 and consequently fk → f in H(L∂ ,Rn). q

The next result is essentially [3, Proposition 2.5.4, page 69], except that we allow
Ω to be unbounded.

Lemma 3.16. For Ω ⊆ Rn (open with bounded Lipschitz boundary) there exists an
open covering (Oi)

k
i=0 of Ω such that Oi∩Ω is bounded and strongly star-shaped for

i ∈ {1, . . . , k} and O0 ⊆ Ω

Proof. Since Ω has a bounded Lipschitz boundary, there is an open ball Br(0) such
that ∂Ω ⊆ Br(0). Hence, Br(0) ∩ Ω is bounded and open with bounded Lipschitz
boundary and we can apply [3, Proposition 2.5.4, page 69]. This gives an open
covering (Oi)

k
i=1 of Br(0) ∩ Ω and in particular of ∂Ω such that Oi ∩ Ω is strongly

star-shaped. We define O0 as Bε(Ω \
⋃k
i=1Oi), where ε > 0 is small enough such

that O0 ⊆ Ω. q

The next lemma is similar to [5, Lemma 1, page 206], which proves the result for
L∂ = rot. The main idea of the proof can be adopted.

Lemma 3.17. If f ∈ H(L∂ ,Ω) is such that

〈L∂f, φ〉L2(Ω) + 〈f, LH
∂ φ〉L2(Ω) = 0 for all φ ∈ D(Rn)m1 , (3.2)

then f ∈ H0(L∂ ,Ω).

Recall the definition of a positive mollifier: Let ρ ∈ D(Rn). Then we define ρε by

ρε(ζ) = ε−nρ( ζε ). We say that ρε is a positive mollifier, if ρ(ζ) ≥ 0,
∫
Rn ρ(ζ) dζ = 1

and limε→0 ρε = δ0 in the sense of distributions, where δ0 is the Dirac delta function
(〈δ0, φ〉D′,D = φ(0)).

In particular, for every f ∈ L2(Rn) holds

ρε ∗ f :=

∫
Rn
ρε(ζ)f(.− ζ) dζ

ε→0−→ f in L2(Rn).

Proof. Let f ∈ H(L∂ ,Ω) satisfy (3.2). Then we have to find a sequence (fn)n∈N in
D(Ω)m2 that converges to f with respect to ‖.‖H(L∂ ,Ω).

We define f̃ and L̃∂f as the extension of f and L∂f respectively on Rn such that
these functions are 0 outside of Ω. By

〈L̃∂f, φ〉D′(Rn),D(Rn) = 〈L̃∂f, φ〉L2(Rn) = 〈L∂f, φ〉L2(Ω)
(3.2)
= 〈f,−LH

∂ φ〉L2(Ω)

= 〈f̃ ,−LH
∂ φ〉L2(Rn) = 〈f̃ ,−LH

∂ φ〉D′(Rn),D(Rn)

for φ ∈ D(Rn)m1 , we see that L̃∂f = L∂ f̃ and f̃ ∈ H(L∂ ,Rn) with supp f̃ ⊆ Ω.
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By Lemma 3.16 there is a finite open covering (Oi)
k
i=0 of Ω such that Oi ∩ Ω is

strongly star-shaped for i ∈ {1, . . . , k} and O0 ⊆ Ω. We employ a partition of unity
and obtain (αi)

k
i=0, subordinate to this covering, that is

αi ∈ C∞(Rn), suppαi ⊆ Oi, αi(ζ) ∈ [0, 1], and

k∑
i=0

αi(ζ) = 1 for ζ ∈ Ω.

Hence, f̃ =
∑k
i=0 αif̃ and we define fi := αif̃ . By construction fi ∈ H(L∂ ,Rn) and

supp fi ⊆ Oi ∩ Ω.

• For i ∈ {1, . . . , k} we have Oi ∩Ω is strongly star-shaped. Lemma 3.13 ensures
that supp(fi)θ ⊆ Oi ∩ Ω for θ ∈ (0, 1) and (fi)θ → fi in H(L∂ ,Rn) for θ → 1.

Let ρε be a positive mollifier. Then ρε ∗ g → g in L2(Rn) for an arbitrary
g ∈ L2(Rn). Since L∂(ρε ∗ h) = ρε ∗ L∂h, we also have ρε ∗ h→ h in H(L∂ ,Rn)
for h ∈ H(L∂ ,Rn) and since ρε ∈ C∞(Rn) we have ρε ∗ h ∈ C∞(Rn)m2 .

For fixed θ ∈ (0, 1) and ε sufficiently small, we can say supp ρε∗(fi)θ ⊆ Oi∩Ω.
Hence, by a diagonalization argument we find a sequence (ρεj ∗ (fi)θj )j∈N in
D(Ω)m2 converging to fi in H(L∂ ,Rn). Doing this for every i ∈ {1, . . . , k}
yields sequences (fi,j)j∈N in D(Ω)m2 converging to fi in H(L∂ ,Rn).

• For f0 we have supp f0 ⊆ O0 ⊆ Ω and by Lemma 3.15 there exists a sequence
(gl)l∈N in H(L∂ ,Rn) that converges to f0 in H(L∂ ,Rn) such that every gl has
compact support in Ω. Every gl can be approximated by ρε ∗ gl for ε → 0
in H(L∂ ,Rn) and if ε is sufficiently small supp ρε ∗ gl ⊆ Ω. A diagonalization
argument establishes a sequence (f0,j)j∈N in D(Ω)m2 that converges to f0 in
H(L∂ ,Rn).

Consequently,
(∑k

i=0 fi,j
)
j∈N is a sequence in D(Ω)m2 that converges to f̃ in

H(L∂ ,Rn) and by Lemma 3.10 also in H(L∂ ,Ω). q

Theorem 3.18. D(Rn)m2
∣∣
Ω

is dense in H(L∂ ,Ω).

Proof. Suppose D(Rn)m2
∣∣
Ω

is not dense in H(L∂ ,Ω). Then there exists a non zero

f ∈ H(L∂ ,Ω) such that

〈f, g〉H(L∂ ,Ω) = 〈f, g〉L2 + 〈L∂f, L∂g〉L2 = 0 for all g ∈ D(Rn)m2
∣∣
Ω
. (3.3)

In particular, for an arbitrary h ∈ D(Ω)m2 we have

〈f, h〉D′,D = 〈f, h〉L2 = −〈L∂f, L∂h〉L2 = −〈L∂f, L∂h〉D′,D = 〈LH
∂ L∂f, h〉D′,D,

which implies that f = LH
∂ L∂f ∈ L2(Ω)m2 and f0 := L∂f ∈ H(LH

∂ ,Ω). Hence we
can rewrite (3.3) as

〈LH
∂ L∂f︸︷︷︸

=f0

, g〉L2(Ω) + 〈L∂f︸︷︷︸
=f0

, L∂g〉L2(Ω) = 0 for all g ∈ D(Rn)m2
∣∣
Ω
.

By Lemma 3.17 (switching the roles of L∂ and LH
∂ ) we have f0 ∈ H0(LH

∂ ,Ω). Since
D(Ω)m1 is dense in H0(LH

∂ ,Ω), there is a sequence (fn)n∈N in D(Ω)m1 converging
to f0 with respect to ‖.‖H(LH

∂ ,Ω). The fact f = LH
∂ L∂f = LH

∂ f0 implies

〈f0, fn〉H(LH
∂ ,Ω) = 〈f0, fn〉L2 + 〈LH

∂ f0, L
H
∂ fn〉L2 = 〈L∂f, fn〉L2 + 〈f, LH

∂ fn〉L2

= 〈L∂f, fn〉D′,D − 〈L∂f, fn〉D′,D
= 0.
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Since ‖f0‖2H(LH
∂ ,Ω)

= limn→∞〈f0, fn〉H(LH
∂ ,Ω) = 0, we have f0 = 0, which implies

f = LH
∂ f0 = 0. Hence, D(Rn)m2

∣∣
Ω

is dense in H(L∂ ,Ω). q

4. Port Hamiltonian systems. In this section we will introduce linear first order
port-Hamiltonian systems on multidimensional spatial domains and illustrate the
difficulties we want to overcome.

Definition 4.1. Let m ∈ N and P = (Pi)
n
i=1, where Pi is a Hermitian m×m matrix.

Moreover, let H : Ω → Km×m be such that H(ζ)H = H(ζ) and cI ≤ H(ζ) ≤ CI for
a.e. ζ ∈ Ω and some constants c, C > 0 independent of ζ. Then we endow the space
XH := L2(Ω)m with the scalar product

〈f, g〉XH :=
1

2
〈Hf, g〉L2(Ω)m =

1

2

∫
Ω

〈H(ζ)f(ζ), g(ζ)〉Km dλ(ζ).

We will refer to XH as the state space and to its elements as state variables or
states. Furthermore, let P0 ∈ Km×m be such that PH

0 = −P0. Then we will call the
differential equation

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi
Pi
(
H(ζ)x(t, ζ)

)
+ P0

(
H(ζ)x(t, ζ)

)
, t ∈ R+, ζ ∈ Ω,

x(0, ζ) = x0(ζ), ζ ∈ Ω

(4.1)

a linear, first order port-Hamiltonian system, where x0 ∈ L2(Ω)m is the initial state.
The associated Hamiltonian H : XH → R+ ∪ {0} is defined by

H(x) := 〈x, x〉XH =
1

2

∫
Ω

〈H(ζ)x(ζ), x(ζ)〉Km dλ(ζ),

where H is called the Hamiltonian density.

In most applications the Hamiltonian describes the energy in the state space.
By the convention of regarding a function x : R+ × Ω → Km as x : R+ →

L2(Ω;Km) by setting x(t) = x(t, .), we can rewrite the PDE (4.1) as

ẋ =
( n∑
i=1

∂iPi + P0

)
Hx = (P∂ + P0)Hx, x(0) = x0,

where P∂ is defined by Definition 3.2 replacing L with P .
We want to add the following assumption on P .

Assumption 4.2. Let m,m1,m2 ∈ N such that m = m1 +m2 and let L = (Li)
n
i=1

such that Li ∈ Km1×m2 . Then we assume that P = (Pi)
n
i=1 has the block structure

Pi =

[
0 Li
LH
i 0

]
.

Assumption 4.2 implies that P contains only Hermitian matrices. According
to the block structure we split x ∈ Km into

[ x
LH
x
L

]
, where xLH = (xi)

m1
i=1 and

xL = (xi)
m
i=m1+1. We have the identities H(P∂ ,Ω) = H(LH

∂ ,Ω)×H(L∂ ,Ω),

P∂ =

[
0 L∂
LH
∂ 0

]
and Pν =

[
0 Lν
LH
ν 0

]
.
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By Lemma 3.8 we have for x, y ∈ H1(Ω)m

〈P∂x, y〉L2(Ω) + 〈x, P∂y〉L2(Ω)

= 〈Pνγ0x, γ0y〉L2(∂Ω)

=

〈[
0 Lν
LH
ν 0

]
γ0

[
xLH

xL

]
, γ0

[
yLH

yL

]〉
L2(∂Ω)

= 〈Lνγ0xL, γ0yLH〉L2(∂Ω) + 〈LH
ν γ0xLH , γ0yL〉L2(∂Ω)

= 〈Lνγ0xL, γ0yLH〉L2(∂Ω) + 〈γ0xLH , Lνγ0yL〉L2(∂Ω).

(4.2)

Hence, B = L2(∂Ω)m1 , B1x = Lνγ0xL and B2x = γ0xLH is reminiscent of a bound-
ary triple for A∗0 = P∂ (A0 = P ∗∂ is skew-symmetric by Remark 3.7). However, we
need to extend (4.2) for x, y ∈ H(P∂ ,Ω). In order to do this we have to introduce a
new norm on L2(∂Ω)m1 , which will lead to the notion of quasi Gelfand triples.

5. Quasi Gelfand triples. Normally when we talk about Gelfand triples we have
a Hilbert space X0 and another Hilbert space X+ that can be continuously and
densely embedded into X0. The third space X− is given by the completion of X0

with respect to

‖g‖X− := sup
f∈X+\{0}

|〈g, f〉|X0

‖f‖X+

.

The duality between X+ and X− is given by

〈g, f〉X−,X+
= lim
k→∞

〈gk, f〉X0
,

where (gk)k∈N is a sequence in X0 that converges to g in X−. Details for “ordinary”
Gelfand triple can be found in [6, ch. 2.1, p. 54] or in [13, ch. 2.9, p. 56].

We want to weaken the assumptions such that the norm of X+ is not necessarily
related to the norm of X0. This is in particular necessary for Maxwell’s equations.
In Example 8.10 we point out that is not possible to associate an “ordinary” Gelfand
triple to the spatial differential operator of Maxwell’s equations.

We will have the following setting: Let (X0, 〈., .〉X0
) be a Hilbert space and 〈., .〉X+

another inner product (not necessarily related to 〈., .〉X0
) which is defined on a dense

(w.r.t. ‖.‖X0
) subspace D̃+ of X0. We denote the completion of D̃+ w.r.t. ‖.‖X+

=√
〈., .〉X+

by X+. This completion is again a Hilbert space with the extension of

〈., .〉X+
, for which we use the same symbol. Now we have D̃+ is dense in X0 w.r.t.

‖.‖X0 and dense in X+ w.r.t. ‖.‖X+ .
Summarized:

• X0 Hilbert space endowed with 〈., .〉X0
.

• D̃+ dense subspace of X0 (w.r.t. ‖.‖X0
).

• 〈., .〉X+
another inner product defined on D̃+.

• X+ completion of D̃+ with respect to ‖.‖X+
.

Example 5.1. Let X0 = `2(Z \ {0}) with the standard inner product 〈x, y〉X0
=∑∞

n=1 xnyn + x−ny−n. We define the inner product

〈x, y〉X+
:=

∞∑
n=1

n2xnyn +
1

n2
x−ny−n
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and the set D̃+ := {f ∈ X0 : ‖f‖X+ < +∞}. Clearly, this inner product is well-

defined on D̃+. Let ei denote the sequence which is 1 on the i-th position and 0
elsewhere. Since {ei : i ∈ Z \ {0}} is a orthonormal basis of X0 and contained in

D̃+, D̃+ is dense in X0. The sequence
(∑n

i=1 e−i
)
n∈N is a Cauchy sequence with

respect to ‖.‖X+
but not with respect to ‖.‖X0

.

Definition 5.2. We define

‖g‖X− := sup
f∈D̃+\{0}

|〈g, f〉X0
|

‖f‖X+

for g ∈ X0 and D− :=
{
g ∈ X0 : ‖g‖X− < +∞

}
.

We denote the completion of D− w.r.t. ‖.‖X− by X−. We will also denote the
extension of ‖.‖X− to X− by ‖.‖X− .

Remark 5.3. By definition of D− we can identify every g ∈ D− with an element of

X ′+ by the continuous extension of f ∈ D̃+ 7→ 〈g, f〉X0 to X+. The completion X−
is isomorphic to the closure of D− in X ′+ as ‖g‖X ′+ = ‖g‖X− for g ∈ D−.

Lemma 5.4. D− is complete with respect to ‖g‖X−∩X0
:=
√
‖g‖2X0

+ ‖g‖2X− .

Proof. Let (gn)n∈N be a Cauchy sequence in D− with respect to ‖.‖X−∩X0
. Then

(gn)n∈N is a convergent sequence in X0 (w.r.t. ‖.‖X0
) and a Cauchy sequence in D−

(w.r.t. ‖.‖X−). We denote the limit in X0 by g0. By definition of ‖.‖X− we obtain

for f ∈ D̃+

|〈g0, f〉X0
| = lim

n→∞
|〈gn, f〉X0

| ≤ lim
n→∞

‖gn‖X−‖f‖X+
≤ C‖f‖X+

and consequently g0 ∈ D−.
Let ε > 0 be arbitrary. Since (gn)n∈N is a Cauchy sequence with respect to ‖.‖X− ,

there is an n0 ∈ N such that for all f ∈ D̃+ with ‖f‖X+ = 1

|〈gn − gm, f〉X0
| ≤ ε

2
, if n,m ≥ n0

holds true. Furthermore, for every f ∈ D̃+ there exists an mf ≥ n0 such that

|〈g0 − gmf , f〉X0
| ≤ ε‖f‖X+

2 , because gm → g0 w.r.t. ‖.‖X0
. This yields

|〈g0 − gn, f〉X0 |
‖f‖X+

≤
|〈g0 − gmf , f〉X0

|
‖f‖X+

+
|〈gmf − gn, f〉X0

|
‖f‖X+

≤ ε, if n ≥ n0.

Since the right-hand-side is independent of f , we obtain

‖g0 − gn‖X− = sup
f∈D̃+\{0}

|〈g0 − gn, f〉X0
|

‖f‖X+

≤ ε, if n ≥ n0.

Hence, g0 is also the limit of (gn)n∈N with respect to ‖.‖X− and consequently the
limit of (gn)n∈N with respect to ‖.‖X−∩X0 . q

Lemma 5.5. The embedding ι̃+ : D̃+ ⊆ X+ → X0, f 7→ f is a densely defined
operator with ran ι̃+ is dense in X0 and ker ι̃+ = {0}. Furthermore, the embedding
ι− : D− ⊆ X− → X0, g 7→ g is closed and ker ι− = {0}.

Proof. By assumption on D̃+ and definition of X+ the embedding ι̃+ is densely de-
fined and has a dense range. Clearly, ker ι̃+ = {0} and ker ι− = {0}. By Lemma 5.4
ι− is closed. q
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Lemma 5.6. Let ι̃∗+ denote the adjoint relation (from X0 to X+) of the embedding
mapping ι̃+ in the previous lemma. Then ι̃∗+ is an operator (single-valued, i.e.
mul ι̃∗+ = {0}) and ker ι̃∗+ = {0}. Its domain coincides with D− and ι̃∗+ι− : D− ⊆
X− → X+ is isometric.

If ker ι̃+ = {0}, then ran ι̃∗+ is dense in X+.

Proof. The density of the domain of ι̃+ yields mul ι̃∗+ = (dom ι̃+)⊥ = {0}, and

ran ι̃+
X0

= X0 yields ker ι̃∗+ = {0}. The following equivalences show dom ι̃∗+ = D−:

g ∈ dom ι̃∗+ ⇔ 〈g, ι̃+f〉X0 is continuous in f ∈ D̃+ w.r.t. ‖.‖X+

⇔ sup
f∈D̃+\{0}

|〈g, f〉X0
|

‖f‖X+

< +∞

⇔ g ∈ D−.
For g ∈ D− ⊆ X− we have

‖g‖X− = sup
f∈D̃+\{0}

|〈ι−g, f〉X0 |
‖f‖X+

= sup
f∈D̃+\{0}

|〈ι̃∗+ι−g, f〉X+
|

‖f‖X+

= ‖ι̃∗+ι−g‖X+
,

which proves that ι̃∗+ι− is isometric.

If ker ι̃+ = {0}, then the following equation implies the density of ran ι̃∗+ in X+

{0} = ker ι̃+ = ker ι̃∗∗+ = (ran ι̃∗+)⊥. q

Remark 5.7. As mentioned in Remark 5.3 every g ∈ D− can be regarded as an

element of X ′+ by the continuous extension of D̃+ 3 f 7→ 〈g, ι̃+f〉X0 on X+. Since
D− = dom ι̃∗+, this extension equals 〈ι̃∗+g, .〉X+

.

Proposition 5.8. The following assertions are equivalent.

(i) There is a Hausdorff topological vector space (Z, T ) and two continuous em-
beddings φX+ : X+ → Z and φX0 : X0 → Z such that the diagram

X+

D̃+ Z

X0

φX+id

ι̃+ φX0

commutes.
(ii) If D̃+ 3 fn → 0 w.r.t. ‖.‖X+

and limn→∞ fn exists w.r.t. ‖.‖X0
, then this limit

is also 0 and if D̃+ 3 fn → 0 w.r.t. ‖.‖X0
and limn→∞ fn exists w.r.t. ‖.‖X+

,
then this limit is also 0.

(iii) ι̃+ : D̃+ ⊆ X+ → X0, f 7→ f is closable (as an operator) and its closure is
injective.

(iv) D− is dense in X0 and dense in X ′+.

Proof. (i)⇒ (ii): Let (fn)n∈N be a sequence in D̃+ such that fn → f̂ w.r.t. X+ and
fn → f w.r.t. X0. Since T is coarser than both of the topologies induced by these
norms, we also have

f̂

fn

f

T

T
in Z.
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Since T is Hausdorff, we conclude f = f̂ . Hence, if either f̂ or f is 0, then also the
other is 0.

(ii)⇒ (iii): If (fn, fn)n∈N is a sequence in ι̃+ that converges to (0, f) ∈ X+×X0,
then f = 0 by (ii). Hence, mul ι̃+ = {0} and consequently ι̃+ is closable. On the
other hand, if (fn, fn)n∈N is a sequence in ι̃+ that converges to (f, 0), then f = 0
by (ii). Consequently, ker ι̃+ = {0} and ι̃+ is injective.

(iii) ⇒ (iv): We have (dom ι̃∗+)⊥ = mul ι̃∗∗+ = mul ι̃+. Since ι̃+ is closable, we

have mul ι̃+ = {0}, which yields that dom ι̃∗+ is dense in X0. By Lemma 5.6 dom ι̃∗+
coincides with D−.

The second assertion of Lemma 5.6 yields that ran ι̃∗+ = ι̃∗+D− is dense in X+. As
mentioned in Remark 5.7 every element g ∈ D− can be identified with 〈ι̃∗+g, .〉X+ ∈
X ′+. Therefore, the density of ι̃∗+D− in X+ implies the density of D− in X ′+, because
f 7→ 〈f, .〉X+

is a unitary mapping between X+ and X ′+.

(iv)⇒ (i): Let Y := D− be equipped with ‖g‖Y := ‖g‖X−∩X0
=
√
‖g‖2X− + ‖g‖2X0

.

We define Z := Y ′ as the (anti)dual of Y . Then we have

|〈f, g〉X0
| ≤ ‖f‖X0

‖g‖X0
≤ ‖f‖X0

‖g‖Y for f ∈ X0, g ∈ Y
and |〈f, ι̃∗+g〉X+

| ≤ ‖f‖X+
‖ι̃∗+g‖X+︸ ︷︷ ︸
=‖g‖X−

≤ ‖f‖X+
‖g‖Y for f ∈ X+, g ∈ Y.

Hence, φX0 : f 7→ 〈f, .〉X0 and φX+ : f 7→ 〈f, ι̃∗+.〉X+ are continuous mappings from
X0 and X+, respectively, into Z. The injectivity of these mappings follows from the

density of D− in X0 and D− in X ′+ (ι̃∗+D− dense in X+), respectively. For f ∈ D̃+

we have

φX+f = 〈f, ι̃∗+.〉X+ = 〈ι̃+f, .〉X0 = φX0 ◦ ι̃+f

and consequently the diagram in (i) commutes. q

If one and therefore all assertions in Proposition 5.8 are satisfied, then X+ ∩
X0 is defined as the intersection in Z and complete with the norm ‖.‖X+∩X0

:=√
‖.‖2X+

+ ‖.‖2X0
. Moreover, we define D+ as the closure of D̃+ in X+ ∩ X0 (w.r.t.

‖.‖X+∩X0). Note that although X+ ∩ X0 may depend on Z, D+ is independent of
Z. We will denote the extension of ι̃+ to D+ by ι+, which can be expressed by
ι+ = ι̃+. The adjoint ι∗+ coincides with ι̃∗+. Also D− does not change, if we replace

D̃+ by D+ in Definition 5.2 and all previous results in this section also hold for D+

and ι+ instead of D̃+ and ι̃+, respectively. If ι̃+ is already closed, then D+ = D̃+.

Lemma 5.9. Let one assertion in Proposition 5.8 be satisfied. Let Z = Y ′, where

Y = D− endowed with ‖g‖Y := ‖g‖X−∩X0 =
√
‖g‖2X− + ‖g‖2X0

(from Proposition 5.8

(iv)⇒ (i)). Then we have the following characterization for D+:

• D+ = dom ι∗−,

• D+ = X+ ∩ X0 in Y ′.
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Proof. Note that for g ∈ D− we have g = (ι∗+)−1ι∗+g and that ι∗+ι− is isometric
from dom ι− onto dom(ι∗+)−1. The following equivalences show the first assertion:

f ∈ dom ι∗− ⇔ D− 3 g 7→ 〈f, ι−g〉X0 is continious w.r.t. ‖.‖X−
⇔ D− 3 g 7→ 〈f, (ι∗+)−1ι∗+ι−g〉X0

is continious w.r.t. ‖.‖X−
⇔ f ∈ dom

(
(ι∗+)−1

)∗
= dom ι−1

+ = ran ι+ = D+.

We define P+ := X+ ∩X0 and we define P− analogously to D− in Definition 5.2:

‖g‖P− := sup
f∈P+\{0}

|〈g, f〉X0 |
‖f‖X+

and P− := {g ∈ X0 : ‖g‖P− < +∞}.

Clearly, ‖g‖X− ≤ ‖g‖P− for g ∈ P− and consequently P− ⊆ D−. Furthermore, we
can define ιP+ : P+ ⊆ X+ → X0, f 7→ f analogously to ι̃+. Note that ιP+ is closed
due the completeness of (X+ ∩ X0, ‖.‖X+∩X0). Then we have dom ι∗P+

= P− and

ι̃+ ⊆ ιP+
and therefore ι∗P+

⊆ ι̃∗+. For g ∈ D− and f ∈ P+ we have, by definition of
P+ = X+ ∩ X0 in Z,

|〈g, f〉X0 | = |〈ι̃+g, f〉X+ | ≤ ‖ι̃+g‖X+‖f‖X+ = ‖g‖X−‖f‖X+ ,

which yields ‖g‖P− ≤ ‖g‖X− . Hence, P− = D−, ι∗P+
= ι̃∗+ and ιP+

= ι̃+, which is

equivalent to P+ = X+ ∩ X0 = D̃+

X+∩X0

= D+. q

Theorem 5.10. Let one assertion in Proposition 5.8 be satisfied. Then the mapping
ι∗+ι− can be uniquely extended to a isometric and surjective operator Ψ: X− → X+.
In particular X− is a Hilbert space whose (original) norm is induced by 〈g, f〉X− :=
〈Ψg,Ψf〉X+

and Ψ is unitary.

Proof. By Lemma 5.6 ι∗+ι− : D− ⊆ X− → X+ is an isometry with dense range, since
ι+ is closed and injective by assumption. Since D− is dense in X− by construction,
we can extend ι∗+ι− by continuity to X−. We denote this extension by Ψ. For an
arbitrary g ∈ X− there exists a sequence (gn)n∈N in D− that converges to g (w.r.t.
‖.‖X−). Hence,

‖Ψg‖X+
= lim
n→∞

‖Ψgn‖X+
= lim
n→∞

‖ι∗+ι−gn‖X+
= lim
n→∞

‖gn‖X− = ‖g‖X− .

This yields that Ψ is isometric and ran Ψ is closed in X+. Since ran Ψ also contains
the dense subspace ran ι∗+, the mapping Ψ is surjective.

Clearly, this implies that ‖.‖X− is induced by the inner product 〈., .〉X− = 〈Ψ.,Ψ.〉X+

and X− Hilbert space endowed with this inner product. Moreover, Ψ is then uni-
tary. q

Corollary 5.11. If one assertion in Proposition 5.8 is satisfied, then X− can be
identified with the (anti)dual space of X+ by

Λ:

{
X− → X ′+,
g 7→ 〈Ψg, .〉X+

,

where Ψ is the mapping from Theorem 5.10.

If X1 and X2 are Hilbert spaces and X2 can be identified with the dual space of
X1 by a unitary mapping Λ : X2 → X ′1, then we define

〈g, f〉X2,X1
:= 〈Λg, f〉X ′1,X1

= (Λg)(f).
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X+ X−

X0

D+ D−

D+∩D−

Figure 1. Illustration of a quasi Gelfand triple, where D+ =
dom ι+ and D− = dom ι−.

Remark 5.12. For f ∈ D+ and g ∈ D− we have

〈g, f〉X−,X+
= 〈Ψg, f〉X+

= 〈ι∗+ι−g, f〉X+
= 〈ι−g, ι+f〉X0

= 〈g, f〉X0
.

Since these two sets are dense in X+ and X− respectively, we have for f ∈ X+ and
g ∈ X−

〈g, f〉X−,X+ = lim
(n,m)→(∞,∞)

〈gn, fm〉X0 ,

where (fm)m∈N is a sequence in D+ that converges to f in X+ and (gn)n∈N is a
sequence in D− that converges to g in X−.

Definition 5.13. Let X+, X0 and X− be Hilbert spaces, where X− can be identified
with X ′+. Furthermore, let ι+ : dom ι+ ⊆ X+ → X0 and ι− : dom ι− ⊆ X− → X0

be densely defined, closed, and injective linear mappings with dense range. We call
(X+,X0,X−) a quasi Gelfand triple, if

〈g, f〉X−,X+ = 〈ι−g, ι+f〉X0 (5.1)

for all f ∈ dom ι+ and g ∈ dom ι−, and dom ι∗+ = ran ι−. The space X0 will be
referred as pivot space. We define X+ ∩ X0 := ran ι+ and X− ∩ X0 := ran ι−.

Figure 1 illustrates the setting of a quasi Gelfand triple. Since X− can be iden-
tified with X ′+ and X ′+ can be identified with X+, there exists a unitary operator
Ψ: X− → X+. In fact, by (5.1) this Ψ is the extension of ι∗+ι−, which already
appeared in Theorem 5.10. We will show this in detail in Proposition 5.16. We will
call Ψ the duality map of the quasi Gelfand triple.

In contrast to “ordinary” Gelfand triple, the setting for quasi Gelfand triple is
somehow “symmetric”, i.e. the roles of X+ and X− are interchangeable, since neither
ι+ nor ι− have to be continuous, as indicated in the beginning of this section.

Lemma 5.14. Let (X+,X0,X−) with ι+ and ι− satisfy all conditions of Defini-
tion 5.13 except dom ι∗+ = ran ι−. Then

dom ι∗+ = ran ι− ⇔ dom ι∗− = ran ι+.

In particular, if (X+,X0,X−) is a quasi Gelfand triple, then also dom ι∗− = ran ι+
holds true.

The proof of this is basically the first part of the proof of Lemma 5.9.
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Proof. By (5.1), it is clear that dom ι∗+ ⊇ ran ι− and dom ι∗− ⊇ ran ι+ holds. More-
over, for f ∈ dom ι+, g ∈ dom ι− and the duality mapping Ψ we have

〈g,Ψ∗f〉X− = 〈Ψg, f〉X+
= 〈g, f〉X−,X+

= 〈ι−g, ι+f〉X0
,

which implies ι∗+ι− ⊆ Ψ and ι∗−ι+ ⊆ Ψ∗. In particular, both ι∗+ι− and ι∗−ι+ are
isometric.

Let dom ι∗+ = ran ι−. Then ι∗+ι− is isometric from dom ι− onto dom(ι∗+)−1. The
following equivalences

f ∈ dom ι∗− ⇔ dom ι− 3 g 7→ 〈f, ι−g〉X0
is continuous w.r.t. ‖.‖X−

⇔ dom ι− 3 g 7→ 〈f, (ι∗+)−1ι∗+ι−g〉X0 is continuous w.r.t. ‖.‖X−
⇔ f ∈ dom

(
(ι∗+)−1

)∗
= dom ι−1

+ = ran ι+

imply dom ι∗− = ran ι+.
The other implication follows analogously. q

Lemma 5.15. Let (X+,X0,X−) with ι+ and ι− satisfy all conditions of Defini-
tion 5.13 except dom ι∗+ = ran ι−. Then there exists an extension ι̂− of ι− that
respects (5.1) and satisfies dom ι∗+ = ran ι̂−. In particular, (X+,X0,X−) with ι+
and ι̂− forms a quasi Gelfand triple.

Proof. Note that

g ∈ dom ι∗+ ⇔ dom ι+ 3 f 7→ 〈g, ι+f〉X0
is continuous w.r.t. ‖.‖X+

.

Hence, for g ∈ dom ι∗+ there exists an h ∈ X− such that

〈g, ι+f〉X0
= 〈h, f〉X−,X+

for all f ∈ dom ι+. (5.2)

We define φ(g) := h for g ∈ dom ι+. Clearly, φ(g) = ι−1
− g for g ∈ ran ι−. Therefore,

ι̂− := φ−1 is an extension of ι− that satisfies dom ι∗+ = ran ι̂−. Moreover, by (5.2)
we have 〈ι̂−g, ι+f〉X0 = 〈g, f〉X−,X+ for g ∈ dom ι̂− and f ∈ dom ι+. q

Proposition 5.16. Let (X+,X0,X−) be a quasi Gelfand triple and Ψ: X− → X+

be its duality map. Then

ι∗+ι− = Ψ, ι∗−ι+ = Ψ∗, ι∗+ = Ψι−1
− and ι∗− = Ψ∗ι−1

+ .

Proof. Let f ∈ dom ι+ and g ∈ dom ι−. Then

〈Ψg, f〉X+
= 〈g, f〉X−,X+

= 〈ι−g, ι+f〉X0
= 〈ι∗+ι−g, f〉X+

.

Since dom ι+ is dense in X+, we have Ψg = ι∗+ι−g for all g ∈ dom ι−. Applying

ι−1
− on both sides gives Ψι−1

− = ι∗+. Moreover, the density of dom ι− in X− yields

Ψ = ι∗+ι−.

Analogously, we can show Ψ∗ι−1
+ = ι∗− and Ψ∗ = ι∗−ι+. q

Theorem 5.17. Let X+ and X0 be Hilbert spaces and ι+ : dom ι+ ⊆ X+ → X0

be a densely defined, closed, and injective linear mapping with dense range. Then
there exists a Hilbert space X− and a mapping ι− such that (X+,X0,X−) is a quasi
Gelfand triple.

In particular, X− is given by Definition 5.2, where D+ = ran ι+.

Proof. We will identify dom ι+ with ran ι+ and denote it by D+. Then item (iii)
of Proposition 5.8 is satisfied. Hence, the corresponding D− (Definition 5.2) is
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dense in X0 and its completion X− (w.r.t. to ‖.‖X−) can be identified with X ′+ by
Corollary 5.11. The linear mapping

ι− :

{
D− ⊆ X− → X0,

g 7→ g,

is densely defined and injective by construction. By the already shown ran ι− = D−
is dense in X0. Finally, by Lemma 5.5 ι− is closed and by Lemma 5.6 dom ι∗+ =
D− = ran ι−. q

Remark 5.18. By Theorem 5.17 the setting in the beginning of the section estab-
lishes a quasi Gelfand triple, if one assertion of Proposition 5.8 is satisfied.

Until the end of this section we will assume that (X+,X0,X−) is a quasi Gelfand
triple and we will identify dom ι+ with ran ι+ and denote it by D+. The set D−
is defined by Definition 5.2 for D+. This set coincides with ran ι−, which we will
identify with dom ι−.

Proposition 5.19. The space D+ ∩ D− is complete with respect to ‖.‖X+∩X− :=√
‖.‖2X+

+ ‖.‖2X− .

Proof. For f ∈ D+ ∩D− we have

‖f‖2X0
= |〈f, f〉X0

| = |〈f, f〉X−,X+
| ≤ ‖f‖X−‖f‖X+

≤ ‖f‖2X+∩X− .

Hence, every Cauchy sequence in D+∩D− with respect to ‖.‖X+∩X− is also a Cauchy
sequence with respect to ‖.‖X0 , ‖.‖X+ and ‖.‖X− .

Let (fn)n∈N be a Cauchy sequence in D+∩D− with respect to ‖.‖X+∩X− . By the
closedness of ι+ the limit with respect to ‖.‖X0

and the limit with respect to ‖.‖X+

coincide. The same argument for ι− yields that the limit with respect to ‖.‖X0

and the limit with respect ‖.‖X− also coincide. Therefore, all these limits have to
coincide and (fn)n∈N converges to that limit in D+ ∩D− w.r.t. ‖.‖X+∩X− . q

Lemma 5.20. The operator

[
ι+ ι−

]
:

 D+ ×D− ⊆ X+ ×X− → X0,[
f
g

]
7→ f + g,

is closed.

Proof. Let
(([

fn
gn

]
, zn
))
n∈N be a sequence in

[
ι+ ι−

]
that converges to

([
f
g

]
, z
)

in

X+ ×X− ×X0. Then we have

‖z‖2X0
= lim
n→∞

‖fn + gn‖2X0
= lim
n→∞

(
‖fn‖2X0

+ ‖gn‖2X0
+ 2 Re〈fn, gn〉X0

)
.

Since 2 Re〈fn, gn〉X0 converges to 2 Re〈f, g〉X+,X− , we conclude that ‖fn‖X0 and
‖gn‖X0

are bounded. Hence, there exists a subsequence of (fn)n∈N that converges

weakly to an f̃ ∈ X0. Moreover, by Lemma A.3 we can pass on to a further

subsequence (fn(k))k∈N such that
(

1
j

∑j
k=1 fn(k)

)
j∈N converges to f̃ strongly (w.r.t.

‖.‖X0). The sequence
(

1
j

∑j
k=1 fn(k)

)
j∈N has still the limit f in X+ (w.r.t. ‖.‖X+)

and because ι+ is closed we conclude that f = f̃ ∈ D+. By linearity we also

have 1
j

∑j
k=1 gn(k) → z− f in X0 for the same subsequence. Since 1

j

∑j
k=1 gn(k) is a

Cauchy sequence in both X− and X0, the closedness of ι− gives that g = z−f ∈ D−.
Hence, z =

[
ι+ ι−

] [
f
g

]
and the operator

[
ι+ ι−

]
is closed. q



PORT-HAMILTONIAN SYSTEMS ON MULTIDIMENSIONAL SPATIAL DOMAINS 985

Proposition 5.21. D+ ∩D− is dense in X0 with respect to ‖.‖X0 .

Proof. By dom ι∗± = D∓ (Lemma 5.14) we have

X0 =
(

mul
[
ι+ ι−

] )⊥
= dom

[
ι+ ι−

]∗
= dom ι∗+ ∩ dom ι∗− = D− ∩D+. q

The following theorem can be found in [17, Theorem 2 p. 200], we just changed
that the operator maps into a different space, which does not change the proof.

Theorem 5.22 (J. von Neumann). Let T be a closed linear operator from the
Hilbert spaces X to the Hilbert space Y . Then T ∗T and TT ∗ are self-adjoint, and
(IX + T ∗T ) and (IY + TT ∗) are boundedly invertible.

Corollary 5.23. The set D+ ∩ D− is dense in X+ and X− with respect to their
corresponding norms.

Proof. Applying Theorem 5.22 to ι+ yields ι∗+ι+ is self-adjoint. Hence, dom ι∗+ι+ is
dense in X+. By Lemma 5.14 dom ι∗+ = D−, consequently dom ι∗+ι+ = D+ ∩D−.

An analogous argument for ι− yields D+ ∩D− is dense in X−. q

Corollary 5.24. D+ +D− = X0.

Proof. Applying Theorem 5.22 to ι+ gives that (IX0
+ ι+ι

∗
+) is onto. Hence, for

every x ∈ X0 there exists a gx ∈ dom ι+ι
∗
+ ⊆ D− such that

x = gx︸︷︷︸
∈D−

+ ι+ι
∗
+gx︸ ︷︷ ︸
∈D+

.

Since gx ∈ dom ι+ι
∗
+, we have ι∗+gx ∈ D+ and consequently x ∈ D+ +D−. q

Proposition 5.25. Let T be a bounded and boundedly invertible mapping from X0

to another Hilbert space Y0. Then P+ := TD+ equipped with ‖f‖Y+
:= ‖T−1f‖X+

establishes a quasi Gelfand triple (Y+,Y0,Y−), where Y+ is the completion of P+

and Y− is the completion of P− defined as in Definition 5.2, where D+ is replaced
by P+. Moreover, P− = (T ∗)−1D− and ‖g‖Y− = ‖T ∗g‖X− for g ∈ P−.

Proof. The mapping T
∣∣
D+

: D+ → P+ is isometric and surjective, if we equip its

domain with ‖.‖X+ and its codomain with ‖.‖Y+ . So the linear (single-valued)

relation
[
T 0
0 T

]
ι+ = {(Tf, Tg) : (f, g) ∈ ι+} ⊆ Y+ × Y0 is closed. Since this linear

relation coincides with the embedding ιP+
: P+ ⊆ Y+ → Y0, f 7→ f , Theorem 5.17

yields that (Y+,Y0,Y−) is a quasi Gelfand triple.
For g ∈ P− we have

‖g‖Y− = sup
h∈P+\{0}

|〈g, h〉Y0
|

‖h‖Y+

= sup
f∈D+\{0}

|〈g, Tf〉Y0
|

‖Tf‖Y+

= sup
f∈D+\{0}

|〈T ∗g, f〉X0 |
‖f‖X+

= ‖T ∗g‖X−

and consequently P− = (T ∗)−1D−. q

Corollary 5.26. With the assumption from Proposition 5.25 the operators T
∣∣
D+

and (T ∗)−1
∣∣
D−

can be continuously extended to unitary operators from X+ and X−
to Y+ and Y− respectively. These extension will be denoted by T+ and (T ∗)−1

− .

Moreover, 〈(T ∗)−1
− g, T+f〉Y−,Y+ = 〈g, f〉X−,X+ for g ∈ X− and f ∈ X+.
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Corollary 5.27. Let S, T be a bounded and boundedly invertible mappings on X0.

Then
[
ST
∣∣
D+

S(T∗)−1
∣∣
D−

]
is a densely defined closed surjective linear operator from

X+ ×X− to X0. In particular ran
[
ST
∣∣
D+

S(T∗)−1
∣∣
D−

]
= X0.

Proof. Let P+ = TD+. Then by Proposition 5.25 the corresponding P− can be
obtained by (T ∗)−1D−. The mapping

Ξ:


X+ ×X− ×X0 → Y+ × Y− ×X0,fg

z

 7→

T+ 0 0
0 (T ∗)−1

− 0
0 0 S−1

fg
z


is linear bounded and boundedly invertible, where Y± is the completion of P± as
in Proposition 5.25. Since (Y+,X0,Y−) is a quasi Gelfand triple,

[
ιP+

ιP−
]

=


 Tf

(T ∗)−1g
Tf + (T ∗)−1g

 : f ∈ D+, g ∈ D−


is closed in Y+ × Y− ×X0 (Lemma 5.20) and therefore also its pre-image under Ξ

Ξ−1
([
ιP+ ιP−

])
=

T−1 0 0
0 T ∗ 0
0 0 S

 [ιP+ ιP−
]

=
[
STι+ S(T ∗)−1ι−

]
is closed in X+ ×X− ×X0. Furthermore, by Corollary 5.24

ran
[
ST
∣∣
D+

S(T ∗)−1
∣∣
D−

]
= S ran

[
ιP+

ιP−
]

= SX0 = X0. q

Lemma 5.28. Let A0 be a densely defined, closed, skew-symmetric operator on X0,
Y0 be a Hilbert space, and let T : X0 → Y0 be a bounded and boundedly invertible.
Let (X+,X0,X−) be a quasi Gelfand triple such that (X+, B1,ΨB2) is a boundary
triple for A∗0. Furthermore, let Y+ and Y− be as defined in Proposition 5.25. Then
(Y+,Y0,Y−) is also a quasi Gelfand triple such that (Y+, T+B1,Φ(T ∗)−1

− B2) is a
boundary triple for A∗0, where Φ denotes the duality map of (Y+,Y0,Y−).

Proof. By Proposition 5.25 (Y+,Y0,Y−) is a quasi Gelfand triple. For x, y ∈ domA∗0
we have, by Corollary 5.26,

〈B1x,ΨB2y〉X+
= 〈B1x,B2y〉X+,X− = 〈T+B1x, (T

∗)−1
− B2y〉Y+,Y−

= 〈T+B1x,Φ(T ∗)−1
− B2y〉Y+

.

Since T+ : X+ → Y+ and (T ∗)−1
− : X− → Y− are surjective, the surjectivity of[

T+B1

Φ(T∗)−1
− B2

]
=
[
T+ 0

0 Φ(T∗)−1
− Ψ−1

] [
B1

ΨB2

]
follows from the surjectivity of

[
B1

ΨB2

]
. q

Remark 5.29. In the setting of Lemma 5.28 the duality map Φ can be described by

Φ = T+Ψ
(
(T ∗)−1

−
)−1

. Note that
(
(T ∗)−1

−
)−1

can be described by the continuous

extension of T ∗
∣∣
P−

: P− ⊆ Y− → X−. We denote this extension by T ∗−. Hence,

Φ = T+ΨT ∗−.
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6. Boundary spaces. In this section we will construct a suitable boundary space
VL (Definition 6.5), such that we can extend the integration by parts formula
(Lemma 3.8). We will formulate the boundary conditions in this space in sec-
tion 7. This space will provide a quasi Gelfand triple with a subspace of L2(∂Ω)
as pivot space. In order to impose different boundary conditions on different parts
of the boundary we introduce boundary operators that only act on a part of the
boundary and their boundary spaces VL,Γ1 .

Definition 6.1. We say (Γj)
k
j=1, where Γj ⊆ ∂Ω, is a splitting with thin boundaries

of ∂Ω, if

(i)
⋃k
j=1 Γj = ∂Ω,

(ii) the sets Γj are pairwise disjoint,
(iii) the sets Γj are relatively open in ∂Ω,
(iv) the boundaries of Γj have zero measure w.r.t. the surface measure of ∂Ω.

For Γ ⊆ ∂Ω we will denote by PΓ the orthogonal projection from L2(∂Ω)m1 on
L2
π(Γ) := ran1ΓLν ⊆ L2(Γ)m1 , where 1M denotes the indicator function for a set

M . We endow L2
π(Γ) with the inner product of L2(∂Ω)m1 . Therefore, we can adapt

(3.1) to obtain

〈L∂f, g〉L2(Ω)m1 + 〈f, LH
∂ g〉L2(Ω)m2 = 〈Lνγ0f, P∂Ωγ0g︸ ︷︷ ︸

πLg

〉L2(∂Ω)m1 . (6.1)

We define πΓ
L : H1(Ω)m1 → L2

π(Γ) by πΓ
L := PΓγ0 and πL := π∂Ω

L . Since both PΓ and
γ0 are continuous, the mapping πΓ

L is also continuous. Therefore, kerπΓ
L is closed.

Note that PΓ = 1ΓP∂Ω and consequently πΓ
L = 1ΓπL, and 1ΓLν = Lν1Γ.

Example 6.2. Let L be as in Example 3.3. Then Lνf = ν · f and Lν is certainly
surjective. Therefore, L2

π(∂Ω) = L2(∂Ω), πL = γ0 and πΓ
L = 1Γγ0. Since LH

∂ = grad,
we have H(LH

∂ ,Ω) = H1(Ω).

Lemma 6.3. Let Γ ⊆ ∂Ω be relatively open and let the boundary of Γ have zero
measure (w.r.t. the surface measure of ∂Ω). Then kerπΓ

L is closed as subspace of
H1(Ω)m1 endowed with the trace topology of ‖.‖H(LH

∂ ,Ω), i.e.

kerπΓ
L

‖.‖
H(LH

∂
,Ω) ∩H1(Ω)m1 = kerπΓ

L.

Proof. Clearly, kerπΓ
L

‖.‖
H(LH

∂
,Ω) ∩ H1(Ω)m1 ⊇ kerπΓ

L. So we will show the other
inclusion. Note that for Υ ⊆ ∂Ω we have

H1
Υ(Ω)m2 :=

{
f ∈ H1(Ω)m2 : 1Υγ0f = 0 ∈ L2(∂Ω)m2

}
.

Hence, H1
∂Ω\Γ(Ω)m2 = H1

∂Ω\Γ(Ω)m2 , since the boundary of Γ has zero measure. Let

(gn)n∈N be a sequence in kerπΓ
L which converges to g ∈ H1(Ω)m1 with respect to

‖.‖H(LH
∂ ,Ω). By Corollary 3.9 we have for an arbitrary f ∈ H1

∂Ω\Γ(Ω)m2

|〈Lνγ0f, π
Γ
L(g − gn)〉L2 | = |〈Lνγ0f, πL(g − gn)〉L2 | ≤ ‖f‖H(L∂ ,Ω)‖g − gn‖H(LH

∂ ,Ω).

Since πΓ
L(g − gn) = πΓ

Lg and the right-hand-side converges to 0, we can see that
πΓ
Lg ⊥ Lνγ0H

1
∂Ω\Γ(Ω)m2 . By [13, Th. 13.6.10, Re. 13.6.12] γ0H

1
∂Ω\Γ(Ω)m2 is

dense in L2(Γ)m2 , which implies πΓ
Lg ⊥ ran1ΓLν . By definition πΓ

Lg is also in

ran1ΓLν , which leads to πΓ
Lg = 0. Hence, kerπΓ

L is closed in H1(Ω)m1 with respect
to ‖.‖H(LH

∂ ,Ω). q
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By the previous lemma

‖φ‖MΓ
:= inf

{
‖g‖H(LH

∂ ,Ω) : πΓ
Lg = φ

}
is a norm on MΓ := ranπΓ

L. The next lemma will show that this norm is induced
by an inner product.

Lemma 6.4. Let Γ ⊆ ∂Ω be relatively open and let the boundary of Γ have zero
measure (w.r.t. the surface measure of ∂Ω). Then the space (MΓ, ‖.‖MΓ

) is a pre-
Hilbert space. Furthermore, its completion denoted by (MΓ, ‖.‖MΓ

) is isomorphic

to the Hilbert space H(LH
∂ ,Ω)

/
kerπΓ

L

H(LH
∂ ,Ω)

. The mapping πΓ
L : H1(Ω)m1 → MΓ

can be continuously extended to a surjective contraction π̄Γ
L : H(LH

∂ ,Ω)→MΓ. The

kernel of π̄Γ
L satisfies ker π̄Γ

L = kerπΓ
L

H(LH
∂ ,Ω)

.

Instead of π̄∂Ω
L we will just write π̄L.

Proof. By Lemma 6.3 kerπΓ
L is closed in H1(Ω)m1 with respect to trace topology

of ‖.‖H(LH
∂ ,Ω), which implies that

(
H1(Ω)m1

/
kerπΓ

L
, ‖.‖H(LH

∂ ,Ω)
/

kerπΓ
L

)
is a normed

space (normed space factorized by a closed subspace is again a normed space). Since∥∥[g]∼
∥∥
H(LH

∂ ,Ω)
/

kerπΓ
L

=
∥∥πΓ

Lg
∥∥
MΓ
,

it is straight forward that [g]∼ 7→ πΓ
Lg is an isometry from

(
H1(Ω)m1

/
kerπΓ

L
,

‖.‖H(LH
∂ ,Ω)

/
kerπΓ

L

)
onto (MΓ, ‖.‖MΓ

).

Clearly, (MΓ, ‖.‖MΓ
) has a completion (MΓ, ‖.‖MΓ

). By definition of the norm

‖.‖MΓ
we have for every g ∈ H1(Ω)m1

‖πΓ
Lg‖MΓ

= ‖πΓ
Lg‖MΓ ≤ ‖g‖H(LH

∂ ,Ω).

Therefore, we can extend πΓ
L by continuity on H(LH

∂ ,Ω). This extension is denoted
by π̄Γ

L and is a contraction by the previous equation.
Let g ∈ H(LH

∂ ,Ω). Then by Theorem 3.18 there exists a sequence (gn)n∈N in
H1(Ω)m1 , which converges to g. Therefore, we have

‖π̄Γ
Lg‖MΓ

= lim
n→∞

‖πΓ
Lgn‖MΓ = lim

n→∞
inf

k∈kerπΓ
L

‖gn + k‖H(LH
∂ ,Ω).

The triangular inequality yields

inf
k∈kerπΓ

L

‖g + k‖ − ‖gn − g‖ ≤ inf
k∈kerπΓ

L

‖gn + k‖ ≤ inf
k∈kerπΓ

L

‖g + k‖+ ‖gn − g‖.

Hence, we have

‖π̄Γ
Lg‖MΓ

= inf
k∈kerπΓ

L

‖g + k‖H(LH
∂ ,Ω) = inf

k∈kerπΓ
L

‖g + k‖H(LH
∂ ,Ω) (6.2)

and consequentlyH(LH
∂ ,Ω)

/
kerπΓ

L
is isomorphic to ran π̄Γ

L. SinceH(LH
∂ ,Ω)

/
kerπΓ

L

is a Hilbert space, in particular complete, and MΓ ⊆ ran π̄Γ
L ⊆ MΓ, we have MΓ =

ran π̄Γ
L. This makes MΓ also a Hilbert space and MΓ a pre-Hilbert space.

Finally, equation (6.2) implies ker π̄Γ
L = kerπΓ

L. q
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Now we are able to define a complete subspace of H(LH
∂ ,Ω) that is in some sense

0 at one part of the boundary and the corresponding boundary space for the other
part of the boundary.

Definition 6.5. Let Γ0,Γ1 ⊆ ∂Ω be a splitting with thin boundaries and π̄L the
extension of πL introduced in Lemma 6.4. Then we define

HΓ0(LH
∂ ,Ω) := ker π̄Γ0

L and VL,Γ1
:= ran π̄L

∣∣
HΓ0 (LH

∂ ,Ω)
,

where we endow HΓ0
(LH
∂ ,Ω) with ‖.‖H(LH

∂ ,Ω) and VL,Γ1
with ‖.‖VL,Γ1

:= ‖.‖M∂Ω
.

Instead of VL,∂Ω = ran π̄L = M∂Ω we just write VL.

From now on until the end of this section we will assume that Γ0,Γ1 ⊆ ∂Ω is a
splitting with thin boundaries. By Lemma 6.4 VL is a Hilbert space.

Note that VL,Γ1
and MΓ1

are not necessarily the same space. Although, we have

π̄Γ1

L g = π̄Lg (in L2(∂Ω)m1) for g ∈ H1(Ω)m1 ∩ HΓ0
(LH
∂ ,Ω), but we can only say

‖π̄Γ1

L g‖MΓ1
≤ ‖π̄Lg‖VL,Γ1

.

Example 6.6. Continuing Example 6.2 yields HΓ0
(LH
∂ ,Ω) = H1

Γ0
(Ω)m1 = {f ∈

H1(Ω)m1 : 1Γ1
γ0f = 0} which already appeared in the proof of Lemma 6.3. More-

over, we have π̄L = γ0, π̄Γ1

L = 1Γ1γ0, VL = H1/2(∂Ω), and VL,Γ1 = {f ∈ H1/2(∂Ω) :
f
∣∣
Γ0

= 0}.

Lemma 6.7. The space HΓ0
(LH
∂ ,Ω) equipped with 〈., .〉H(LH

∂ ,Ω) is a Hilbert space

and H1(Ω)m1 ∩ HΓ0
(LH
∂ ,Ω) is dense in HΓ0

(LH
∂ ,Ω). Moreover, VL,Γ1

is a closed
subspace of VL and therefore also a Hilbert space.

Proof. By definition of HΓ0(LH
∂ ,Ω) and Lemma 6.4 we have

HΓ0
(LH
∂ ,Ω) = ker π̄Γ0

L = kerπΓ0

L = H1(Ω)m1 ∩HΓ0
(LH
∂ ,Ω).

Note that kerπL ⊆ kerπΓ0

L , since πΓ0

L = 1Γ0
πL. Again by Lemma 6.4, we have

ker π̄L = kerπL ⊆ kerπΓ0

L = ker π̄Γ0

L .

Therefore, π̄Γ0

L ◦ π̄
−1
L : VL → MΓ0

is single-valued (well-defined). For arbitrary

φ ∈ VL and g ∈ π̄−1
L φ we have

‖π̄Γ0

L ◦ π̄
−1
L φ‖MΓ0

= inf
k∈ker π̄

Γ0
L

‖g + k‖H(LH
∂ ,Ω) ≤ inf

k∈ker π̄L
‖g + k‖H(LH

∂ ,Ω) = ‖φ‖VL .

Hence, π̄Γ0

L ◦ π̄
−1
L is continuous and ker π̄Γ0

L ◦ π̄
−1
L is closed in VL and therefore also

a Hilbert space endowed with 〈., .〉VL . The equivalences

φ ∈ ker π̄Γ0

L ◦ π̄
−1
L ⇔ π̄−1

L φ ⊆ ker π̄Γ0

L ⇔ φ ∈ ran π̄L
∣∣
ker π̄

Γ0
L︸ ︷︷ ︸

=VL,Γ1

imply that VL,Γ1 is closed and therefore a Hilbert space. q

Proposition 6.8. The mapping 1Γ1
Lνγ0 : H1(Ω)m2 → L2

π(Γ1) can be extended to
a linear continuous mapping

L̄Γ1
ν : H(L∂ ,Ω)→ V ′L,Γ1

,

such that ‖L̄Γ1
ν f‖V′L,Γ1

≤ ‖f‖H(L∂ ,Ω).
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Proof. Let f ∈ H1(Ω)m2 . For g ∈ H1(Ω)m1 ∩HΓ0(LH
∂ ,Ω) we have by Corollary 3.9∣∣〈1Γ1

Lνγ0f, π̄Lg〉L2(Γ1)m1

∣∣ =
∣∣〈Lνγ0f, π̄Lg〉L2(∂Ω)m1

∣∣ ≤ ‖f‖H(L∂ ,Ω)‖g‖H(LH
∂ ,Ω).

By Lemma 6.7 the subspace M := ran π̄L
∣∣
H1(Ω)m1∩HΓ0 (LH

∂ ,Ω)
⊆ L2

π(Γ1)m1 of VL,Γ1

is dense in VL,Γ1
. For φ ∈ M there exists at least one g ∈ H1(Ω)m1 ∩HΓ0

(LH
∂ ,Ω)

such that πLg = φ. Hence, we can rewrite the inequality as∣∣〈1Γ1Lνγ0f, φ〉L2(Γ1)m1

∣∣ ≤ ‖f‖H(L∂ ,Ω) inf
g∈H1(Ω)m1∩HΓ0

(LH
∂ ,Ω)

π̄Lg=φ

‖g‖H(LH
∂ ,Ω)

= ‖f‖H(L∂ ,Ω)‖φ‖VL,Γ1
.

We will extend the mapping φ 7→ 〈1Γ1
Lνγ0f, φ〉L2(Γ1)m1 by continuity on VL,Γ1

. We
will denote this extension by Ξf . Therefore, we have

|Ξf (φ)| ≤ ‖f‖H(L∂ ,Ω)‖φ‖VL,Γ1
.

This means that the mapping f 7→ Ξf from H1(Ω)m2 to V ′L,Γ1
is continuous, if

we endow H1(Ω)m2 with ‖.‖H(L∂ ,Ω). Once again, we will extend this mapping by

continuity on H(L∂ ,Ω) and denote it by L̄Γ1
ν . q

Instead of writing L̄∂Ω
ν we will just write L̄ν .

Remark 6.9. Since VL,Γ1
is a subspace of VL,∂Ω = VL every element of V ′L can also

be treated as an element of V ′L,Γ1
. By definition of L̄Γ1

ν and L̄ν it is easy to see that

L̄Γ1
ν f = L̄νf

∣∣
VL,Γ1

or equivalently L̄Γ1
ν f and L̄νf coincide as elements of V ′L,Γ1

for

f ∈ H(L∂ ,Ω). Hence, we can say V ′L
∣∣
VL,Γ1

⊆ V ′L,Γ1
. Since Hahn-Banach gives the

reverse inclusion we can even say V ′L
∣∣
VL,Γ1

= V ′L,Γ1
.

The reason for even defining L̄Γ1
ν instead of just using L̄ν is that the range of

its restriction to H1(Ω)m2 is also contained in L2
π(Γ1), which will be important for

getting a quasi Gelfand triple.

Corollary 6.10. For f ∈ H(L∂ ,Ω) and g ∈ HΓ0(LH
∂ ,Ω) we have

〈L∂f, g〉L2(Ω)m1 + 〈f, LH
∂ g〉L2(Ω)m2 = 〈L̄νf, π̄Lg〉V′L,Γ1

,VL,Γ1
.

For f ∈ H(L∂ ,Ω) and g ∈ H(LH
∂ ,Ω) we have

〈L∂f, g〉L2(Ω)m1 + 〈f, LH
∂ g〉L2(Ω)m2 = 〈L̄νf, π̄Lg〉V′L,VL

= 〈π̄LHf, L̄H
ν g〉VLH ,V′

LH
.

Proof. Since H1(Ω)m2 is dense in H(L∂ ,Ω) and H1(Ω)m1 ∩HΓ0
(LH
∂ ,Ω) is dense in

HΓ0
(LH
∂ ,Ω), the first equation follows from (6.1) by continuity. The second equation

is just the special case Γ0 = ∅ and switching the roles of L∂ and LH
∂ yields the last

equation. q

Theorem 6.11. The mapping L̄ν : H(L∂ ,Ω)→ V ′L is linear, bounded and onto.

Proof. By Proposition 6.8 we already know that L̄ν is linear and bounded from
H(L∂ ,Ω) to V ′L.

Let µ ∈ V ′L be arbitrary. Since π̄L is continuous from H(LH
∂ ,Ω) to VL, the

mapping g 7→ 〈µ, π̄Lg〉V′L,VL is continuous from H(LH
∂ ,Ω) to C. Consequently, there

exists an h ∈ H(LH
∂ ,Ω) such that

〈h, g〉H(LH
∂ ,Ω) = 〈µ, πLg〉V′L,VL for all g ∈ H(LH

∂ ,Ω).
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For a test function v ∈ D(Ω)m1 we have

0 = 〈µ, πLv〉V′L,VL = 〈h, v〉H(LH
∂ ,Ω) = 〈h, v〉L2(Ω)m1 + 〈LH

∂ h, L
H
∂ v〉L2(Ω)m2

= 〈h, v〉D′(Ω)m1 ,D(Ω)m1 +
〈
LH
∂ h, L

H
∂ v
〉
D′(Ω)m2 ,D(Ω)m2

=
〈
(I− L∂LH

∂ )h, v
〉
D′(Ω)m1 ,D(Ω)m1

.

This means L∂L
H
∂ h = h in the sense of distributions. However, h ∈ H(LH

∂ ,Ω) implies
h ∈ L2(Ω), which in turn gives L∂L

H
∂ h ∈ L2(Ω)m1 , and LH

∂ h ∈ L2(Ω)m2 . Therefore,
f := L∂h ∈ H(L∂ ,Ω). By Corollary 6.10 for f = LH

∂ h ∈ H(L∂ ,Ω) and g ∈ H(LH
∂ ,Ω)

we have

〈µ, πLg〉V′L,VL = 〈h, g〉H(LH
∂ ,Ω) = 〈h, g〉L2(Ω)m1 + 〈LH

∂ h, L
H
∂ g〉L2(Ω)m2

= 〈(I− L∂LH
∂ )h, g〉L2(Ω)m1 + 〈L̄νLH

∂ h, πLg〉V′L,VL
=
〈
L̄ν (LH

∂ h)︸ ︷︷ ︸
=f

, πLg
〉
V′L,VL

.

Hence, L̄νf = µ and L̄ν is onto. q

Corollary 6.12. The mapping L̄Γ1
ν : H(L∂ ,Ω)→ V ′L,Γ1

is linear, bounded and onto.

Proof. By Proposition 6.8 we already know that L̄Γ1
ν is linear and bounded form

H(L∂ ,Ω) to V ′L. Remark 6.9 gives L̄νf
∣∣
VL,Γ1

= L̄Γ1
ν f for f ∈ H(L∂ ,Ω) and V ′L,Γ1

=

V ′L
∣∣
VL,Γ1

, which completes the proof. q

Theorem 6.13. (VL,Γ1 , L
2
π(Γ1),V ′L,Γ1

) is a quasi Gelfand triple.

Proof. Let D̃+ := ranπL
∣∣
H1

Γ0
(Ω)m1

equipped with ‖.‖X+ = ‖.‖VL,Γ1
and let D−

denote the corresponding set from Definition 5.2 with X0 = L2
π(Γ1). Then by

Remark 5.3 ‖g‖X− = ‖g‖V′L,Γ1
for g ∈ D− and ran1Γ1

Lνγ0 ⊆ D− (by Proposi-

tion 6.8). By definition ran1Γ1
Lνγ0 is dense in L2

π(Γ1) and by Proposition 6.8 and
Corollary 6.12 also dense in V ′L,Γ1

. Consequently, also D− is dense in both L2
π(Γ1)

and V ′L,Γ1
. Hence, assertion (iv) of Proposition 5.8 is satisfied, and by Remark 5.18

the completions of D̃+ and D− form a quasi Gelfand triple with pivot space L2
π(Γ1).

By construction the completion of D̃+ is VL,Γ1
. By the density of D− in V ′L,Γ1

and

‖g‖X− = ‖g‖V′L,Γ1
for g ∈ D− the completion of D− is V ′L,Γ1

. q

Corollary 6.14. H0(LH
∂ ,Ω) = H∂Ω(LH

∂ ,Ω) = ker π̄L = ker L̄H
ν and H0(L∂ ,Ω) =

H∂Ω(L∂ ,Ω) = ker π̄LH = ker L̄ν .

Proof. For g ∈ H0(LH
∂ ,Ω) there is a sequence (gn)n∈N inD(Ω) converging to g, which

implies π̄Lg = limn→∞ π̄Lgn = 0. Therefore, H0(LH
∂ ,Ω) ⊆ ker π̄L = H∂Ω(LH

∂ ,Ω).
On the other hand, if g ∈ H∂Ω(LH

∂ ,Ω), then

〈L∂f, g〉L2(Ω)m1 + 〈f, LH
∂ g〉L2(Ω)m2 = 〈L̄νf, π̄Lg〉V′L,VL = 0
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for all f ∈ H(L∂ ,Ω). Hence, by Lemma 3.17 g ∈ H0(LH
∂ ,Ω). Consequently,

H0(LH
∂ ,Ω) = H∂Ω(LH

∂ ,Ω). The second equality of the statement holds by defini-
tion and the third will be proven by the following equivalences

g ∈ kerπL ⇔ 〈π̄Lg, ψ〉V′L,VL = 0 for all ψ ∈ V ′L
⇔ 〈π̄Lg, L̄νf〉V′L,VL = 0 for all f ∈ H(L∂ ,Ω)

C.6.10⇔ 〈L̄H
ν g, π̄LHf〉V′

LH ,VLH
= 0 for all f ∈ H(L∂ ,Ω)

⇔ 〈L̄H
ν g, φ〉V′

LH ,VLH
= 0 for all φ ∈ VLH

⇔ g ∈ ker L̄H
ν .

Switching L with LH yields H0(L∂ ,Ω) = H∂Ω(L∂ ,Ω) = ker π̄LH = ker L̄ν . q

7. Existence and uniqueness via boundary triples. In this section we will
show that there is a boundary triple associated to the port-Hamiltonian differential
operator (P∂+P0)H, which enables us to formulate boundary conditions that admit
existence and uniqueness of solutions. Moreover, we will parameterize all boundary
conditions that provide unique solutions that are non-increasing in the Hamiltonian.

Recall the setting in section 4. Using πP =
[
πL 0
0 π

LH

]
, Lemma 6.4 and Propo-

sition 6.8, it is easy to see that VP = VL × VLH and therefore V ′P = V ′L × V ′LH .

Furthermore, for P̄ν : H(P∂ ,Ω)→ V ′P and π̄P : H(P∂ ,Ω)→ VP we have

P̄ν =

[
0 L̄ν
L̄H
ν 0

]
and π̄P =

[
π̄L 0
0 π̄LH

]
.

Recall the splitting x = [
x
LH
xL ]. Accordingly, we introduce Hx =

[
(Hx)

LH

(Hx)L

]
for

x ∈ H−1(H(P∂ ,Ω)), so that

P∂Hx =

[
L∂(Hx)L
LH
∂ (Hx)LH

]
,
[
0 L̄ν

]
Hx = L̄ν(Hx)L,

[
π̄L 0

]
Hx = π̄L(Hx)LH .

Theorem 7.1. The operator

A0 := −(P∂ + P0)H, domA0 := H−1(ker P̄ν)

is closed, skew-symmetric, and densely defined on XH. Its adjoint is

A∗0 = (P∂ + P0)H, domA∗0 = H−1(H(P∂ ,Ω)).

Let B1 =
[
π̄L 0

]
H, B2 =

[
0 L̄ν

]
H and Ψ be the duality map of (VL, L2

π(∂Ω),V ′L).
Then (VL, B1,ΨB2) is a boundary triple for A∗0.

Proof. We define Ã as (P∂ + P0)H with dom Ã = H−1(H(P∂ ,Ω)) on XH. By
Lemma 3.5 P∂ : H(P∂ ,Ω) ⊆ L2(Ω)m → L2(Ω)m is a closed operator. Since H is
a bounded operator on L2(Ω)m, and XH and L2(Ω)m have equivalent norms, it is

easy to see that Ã : H−1(H(P∂ ,Ω)) ⊆ XH → XH is closed. Let B∗H denote the

adjoint of B with respect to 〈., .〉H for any Hilbert space H. The adjoint of Ã can
be calculated by

Ã∗ =
(
(P∂ + P0)H

)∗XH = H−1
(
(P∂ + P0)H

)∗L2H = (P
∗L2

∂ + P
∗L2

0 )H

and according to Remark 3.7 we have P
∗L2

∂ = −P∂
∣∣
domP

∗
L2

∂

where domP
∗L2

∂ ⊆
H(P∂ ,Ω). Hence,

Ã∗ = −(P∂ + P0)H
∣∣
H−1(domP

∗
L2

∂ )
= −Ã

∣∣
H−1(domP

∗
L2

∂ )
⊆ −Ã.
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Consequently, Ã∗ is skew-symmetric on XH. Since Ã is closed, we have Ã∗∗ = Ã.
Now we know that Ã is the adjoint of a skew-symmetric operator. So we can

talk about boundary triples for Ã. First we note that

ran
[
B1

ΨB2

]
= ran π̄L × ran ΨL̄ν = VL × VL.

Since H is self-adjoint and P0 is skew-adjoint, we have for x, y ∈ dom Ã

〈Ãx, y〉XH + 〈x, Ãy〉XH
= 〈P∂Hx,Hy〉L2 + 〈Hx, P∂Hy〉L2

by the the identity P∂ =
[

0 L∂
LH
∂ 0

]
and Corollary 6.10 we further have

=

〈[
L∂(Hx)L
LH
∂ (Hx)LH

]
,

[
(Hy)LH

(Hy)L

]〉
L2

+

〈[
(Hx)LH

(Hx)L

]
,

[
L∂(Hy)L
LH
∂ (Hy)LH

]〉
L2

= 〈L∂(Hx)L, (Hy)LH〉L2 +
〈
(Hx)L, L

H
∂ (Hy)LH

〉
L2

+
〈
LH
∂ (Hx)LH , (Hy)L

〉
L2 +

〈
(Hx)LH , LH

∂ (Hy)L
〉
L2

= 〈L̄ν(Hx)L, π̄L(Hy)LH〉V′L,VL + 〈π̄L(Hx)LH , L̄ν(Hy)L〉VL,V′L
= 〈ΨB2x,B1y〉VL + 〈B1x,ΨB2y〉VL .

Therefore, (VL, B1,ΨB2) is a boundary triple for Ã.

By Lemma 2.2 dom Ã∗ = kerB1 ∩ kerB2, which is equal to

kerB1 ∩ kerB2 = H−1
(

ker
[
π̄L 0

]
∩ ker

[
0 L̄ν

] )
= H−1

(
ker π̄L × ker L̄ν

)
.

By Corollary 6.14 this is equal to H−1(ker L̄H
ν × ker L̄ν) = H−1(ker P̄ν). Hence,

Ã∗ = A0 and A∗0 = Ã. q

Remark 7.2. We can replace (VL, B1,ΨB2) by (V ′L,Ψ∗B1, B2) in the previous the-
orem.

Theorem 7.3. Let A∗0 be the operator from the previous theorem and ΨΓ1
the

duality map associated to the quasi Gelfand triple (VL,Γ1
, L2

π(Γ1),V ′L,Γ1
). Then we

have (VL,Γ1
,
[
π̄L 0

]
H,ΨΓ1

[
0 L̄Γ1

ν

]
H) as a boundary triple for

A := A∗0
∣∣
H−1

(
HΓ0

(LH
∂ ,Ω)×H(L∂ ,Ω)

).
Proof. Since we already have a boundary triple for A∗0, we can show that A is the
adjoint of a skew-symmetric operator by Proposition 2.3 (iii). Hence, we have to
check, whether [ 0 I

I 0 ] C⊥ ⊆ C in VL × VL, where C is the corresponding relation to
the domain of A according to Proposition 2.3. For B1, B2 being the mappings from
the previous theorem we have (Note that VL,Γ1

is a subspace of VL; Lemma 6.7)

C =

[
B1

ΨB2

]
domA = VL,Γ1

× VL[
0 I
I 0

]
C⊥ = {0} × V⊥L,Γ1

⊆ VL,Γ1
× VL = C.

For x, y ∈ domA we have, using Remark 6.9,

〈B1x,ΨB2y〉VL =
〈
π̄L(Hx)LH , L̄ν(Hy)L

〉
VL,V′L

=
〈
π̄L(Hx)LH , L̄Γ1

ν (Hy)L
〉
VL,Γ1

,V′L,Γ1

=
〈[
π̄L 0

]
Hx,ΨΓ1

[
0 L̄Γ1

ν

]
Hy
〉
VL,Γ1

,
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which yields item (ii) in Definition 2.1. By ran
[
π̄L 0

0 ΨΓ1 L̄
Γ1
ν

] ∣∣∣
HΓ0

(LH
∂ ,Ω)×H(L∂ ,Ω)

=

VL,Γ1
× VL,Γ1

, the remaining item (i) is fulfilled. q

The next theorem is [9, Theorem 2.5].

Theorem 7.4. Let A0 be a skew-symmetric operator on a Hilbert space X and
(B, B1, B2) be a boundary triple for A∗0. Furthermore let K be a Hilbert space,
WB =

[
W1 W2

]
, where W1,W2 ∈ L(B,K), and A := A∗0

∣∣
domA

, where domA =

kerWB

[
B1

B2

]
. If ranW1 − W2 ⊆ ranW1 + W2 then the following assertions are

equivalent.

(i) The operator A generates a contraction semigroup on X.
(ii) The operator A is dissipative.

(iii) The operator W1 +W2 is injective and the following operator inequality holds

W1W
∗
2 +W2W

∗
1 ≥ 0.

We will reformulate this theorem to fit our situation.

Corollary 7.5. Let K be some Hilbert space and W =
[
W1 W2

]
: VL,Γ1

×VL,Γ1
→

K a bounded linear mapping such that ranW1 −W2 ⊆ ranW1 +W2. Let

D :=
{
x ∈ H−1(HΓ0

(LH
∂ ,Ω)×H(L∂ ,Ω))

: W1

[
π̄L 0

]
Hx+W2Ψ

[
0 L̄Γ1

ν

]
Hx = 0

}
,

where Ψ : V ′L,Γ1
→ VL,Γ1 is the duality mapping corresponding to the quasi Gelfand

triple. Then the following assertions are equivalent.

(i) (P∂ + P0)H
∣∣
D

generates a contraction semigroup.

(ii) (P∂ + P0)H
∣∣
D

is dissipative.

(iii) The operator W1 +W2 is injective and the following operator inequality holds

W1W
∗
2 +W2W

∗
1 ≥ 0.

Corollary 7.5 already gives a parameterization via W for all boundary conditions
that make (P∂ + P0)H a generator of a contraction semigroup. In particular the
corresponding PDEs have unique solutions that continuously depend on the initial
state and don’t grow in the Hamiltonian. However, checking continuity for boundary
operators which map into VL can be difficult. Hence, it would be appreciated to
reduce the conditions on the boundary operators to conditions on better known
spaces like the pivot space L2(∂Ω). The next theorem will provide this.

The following result is a generalization of [9, Theorem 2.6] for quasi Gelfand triple
and also fixes some minor issues, like the specific choice of Ψ and the closedness of[
V1

∣∣
B+∩B0

V2

∣∣
B−∩B0

]
as an operator from B+ × B− to K.

Theorem 7.6. Let (B+,B0,B−) be a quasi Gelfand triple, A0 be a closed skew-
symmetric operator and (B+, B1,ΨB2) be a boundary triple for A∗0, where Ψ is the
duality map of the quasi Gelfand triple. For V1, V2 ∈ L(B0,K) we define

D :=

{
a ∈ domA∗0 : B1a,B2a ∈ B0 and

[
V1 V2

] [B1

B2

]
a = 0

}
and the operator A := A∗0

∣∣
D

. If

(i)
[
V1

∣∣
B0∩B+

V2

∣∣
B0∩B−

]
is closed as an operator from B+ × B− to K,
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(ii) ker
[
V1 V2

]
is dissipative as linear relation on B0,

(iii) V1V
∗
2 + V2V

∗
1 ≥ 0 as operator on K,

then A is a generator of a contraction semigroup.

Proof. It is sufficient to show that A is closed, and A and A∗ are dissipative.

Step 1. Showing that A is closed and dissipative. We have

a ∈ D ⇔
[
B1

B2

]
a ∈ (B0 × B0) ∩ ker

[
V1 V2

]
⇔
[
B1

ΨB2

]
a ∈ ker

[
V1

∣∣
B0∩B+

V2Ψ∗
∣∣
Ψ(B0∩B−)

]
︸ ︷︷ ︸

=:C

.

We can write

C =

{[
q
p

]
∈ B+ × B+ : q ∈ B0, ∃p̃ ∈ B0 : p = Ψp̃, V1q + V2Ψ∗p = 0

}
.

For [ qp ] ∈ C we have

Re〈q, p〉B+ = Re〈q,Ψp̃〉B+ = Re〈q, p̃〉B+,B− = Re〈q, p̃〉B0 ≤ 0,

which implies the dissipativity of A by Proposition 2.3. Assumption (i) implies that
C is closed in B2

+, which implies the closedness of A by Proposition 2.3.

Step 2. Showing that A∗ is dissipative. By Proposition 2.3 we can characterize the
domain of A∗ by

d ∈ domA∗ ⇔
[
B1

ΨB2

]
d ∈

[
0 I
I 0

]
C
⊥B2

+

⇔
[
ΨB2

B1

]
d ∈ ran

[ (
V1

∣∣
B0∩B+

)∗B+(
V2Ψ∗

∣∣
Ψ(B0∩B−)

)∗B+

]B2
+

.

The second equivalence needed the closedness in assumption (i), since (kerT )⊥ =
ranT ∗ for a linear relation (or even unbounded operator) T is not true in general.
Note that if P is a bounded and everywhere defined operator, and Q is a linear
relation, then (PQ)∗ = Q∗P ∗. Hence, by Proposition 5.16(

V1

∣∣
B0∩B+

)∗B+ = (V1ι+)∗ = ι∗+V
∗
1 = ΨV ∗1

∣∣
V ∗1
−1(B0∩B−)

,

where ι+ : B+ ∩ B0 ⊆ B+ → B0 is one embedding of the quasi Gelfand triple and(
V2Ψ∗

∣∣
Ψ(B0∩B−)

)∗B+ = (V2ι−Ψ∗)∗ = (ι−Ψ∗)∗V ∗2 ,

where ι− : B− ∩ B0 ⊆ B− → B0 is the other embedding of the quasi Gelfand triple.
From (Ψι∗−)∗ = ι−Ψ∗ and ι∗− = Ψ∗ι−1

+ (Proposition 5.16) follows (ι−Ψ∗)∗ = Ψι∗− =

ι−1
+ . Consequently,

(V2Ψ∗
∣∣
Ψ(B0∩B−)

)
∗B+ = ι−1

+ V ∗2 = V ∗2
∣∣
V ∗2
−1(B0∩B+)

.

Hence, for[
x
y

]
∈ ran

[
(V1

∣∣
B0∩B+

)
∗B+

(V2Ψ∗
∣∣
Ψ(B0∩B−)

)
∗B+

]

=

{[
ΨV ∗1
V ∗2

]
k : k ∈ V ∗1

−1(B0 ∩ B−) ∩ V ∗2
−1(B0 ∩ B+)

}
,
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we have

Re〈x, y〉B+ = Re〈ΨV ∗1 k, V ∗2 k〉B+ = Re〈V ∗1 k, V ∗2 k〉B−,B+ = Re〈V ∗1 k, V ∗2 k〉B0

= Re〈V2V
∗
1 k, k〉K ≥ 0.

Therefore, C⊥ is accretive and by Proposition 2.3 also A0

∣∣
domA∗

is accretive, which

yields A∗ = −A0

∣∣
domA∗

is dissipative. q

Remark 7.7. If we are already satisfied with the operator closure A is a generator
(instead of A) in the previous theorem, then we can replace condition (i) by

ker
[
V1

∣∣
B0∩B+

V2

∣∣
B0∩B−

]
⊆ ker

[
V1

∣∣
B0∩B+

V2

∣∣
B0∩B−

]B+×B−
, (7.1)

where
[
V1|B0∩B+

V2|B0∩B−

]
is the closure as linear relation (possibly multi-valued).

Clearly, if (7.1) holds, then there is already equality.

Example 7.8. Let (B+,B0,B−) be a quasi Gelfand triple that satisfies all condi-
tions of Theorem 7.6 and let M ∈ L(B0) be coercive (i.e. M ≥ cI, c > 0). Then
V1 := I, V2 := M fulfill all conditions of Theorem 7.6:

(i) Setting S = M
1
2 and T = M−

1
2 in Corollary 5.27 implies the closedness of[

I
∣∣
B0∩B+

M
∣∣
B0∩B−

]
.

(ii) For (x, y) ∈ ker
[
V1 V2

]
we have x = −My. Since M is positive this yields

Re〈x, y〉B0
= Re〈−My, y〉 = −〈My, y〉 ≤ 0.

(iii) V1V
∗
2 + V2V

∗
1 = M∗ +M = 2 ReM ≥ 0.

Moreover, Corollary 5.27 also implies the surjectivity of
[

I
∣∣
B0∩B+

M
∣∣
B0∩B−

]
.

Actually, it would have been enough, if M ∈ L(B0) was boundedly invertible and
accretive. Clearly, also V1 := M , V2 := I fulfill all conditions.

8. Port-hamiltonian systems as boundary control systems. We will recall
the notion of boundary control systems, scattering passive and impedance passive
in the manner of [12]. We will show that a port-Hamiltonian system can be de-
scribed as such a system. This concept already provides solution theory (see i.e. [11,
Lemma 2.6]). It is well known that every scattering passive boundary control system
induces a scattering passive well-posed linear system.

Definition 8.1. A colligation Ξ :=
([

G
L
K

]
;
[ U
X
Y

])
consists of the three Hilbert spaces

U , X , and Y, and the three linear maps G, L, and K, with the same domain Z ⊆ X
and with values in U , X , and Y, respectively.

Definition 8.2. A colligation Ξ :=
([

G
L
K

]
;
[ U
X
Y

])
is an (internally well-posed) bound-

ary control system, if

(i) the operator
[
G
L
K

]
is closed from X to

[ U
X
Y

]
,

(ii) the operator G is surjective, and

(iii) the operator A := L
∣∣
kerG

generates a contraction semigroup on X .
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We think of the operators in this definition as determining a system via

u(t) = Gx(t),

ẋ(t) = Lx(t), x(0) = x0,

y(t) = Kx(t).

(8.1)

We call U the input space, X the state space, Y the output space and Z the solution
space.

Definition 8.3. Let Ξ =
([

G
L
K

]
;
[ U
X
Y

])
be a colligation. If Ξ is a boundary control

system such that

2 Re〈Lx, x〉X + ‖Kx‖2Y ≤ ‖Gx‖2U for x ∈ Z, (8.2)

then it is scattering passive and it is scattering energy preserving if we have equality
in (8.2).

We say Ξ is impedance passive (energy preserving), if Y = U ′, Ψ : U ′ → U is the

unitary identification mapping and Ξ̃ :=

([ 1√
2

(G+ΨK)

L
1√
2

(G−ΨK)

]
;

[
U
X
U

])
is scattering passive

(energy preserving).

Note that an impedance passive (energy preserving) colligation Ξ does not need
to be a boundary control system. If U = Y, then Ψ is the identity mapping.

Corresponding to a port-Hamiltonian system we want to introduce the following
operators

Gp := S+

[
π̄L 0

]
H : H−1(H(P∂ ,Ω)) ⊆ XH → SVL,

Lp := (P∂ + P0)H : H−1(H(P∂ ,Ω)) ⊆ XH → XH,
Kp := (S∗)−1

−
[
0 L̄ν

]
H : H−1(H(P∂ ,Ω)) ⊆ XH → (SVL)′,

where S ∈ L(L2(∂Ω)m1) is boundedly invertible, and S+ and (S∗)−1
− denote their

extension on VL and V ′L respectively (see Corollary 5.26). By Lemma 5.28 also Gp

and Kp establish a boundary triple for Lp restricted to HΓ0
(LH
∂ ,Ω)×H(L∂ ,Ω) and

(S+VL,Γ1 , SL
2
π(Γ1), (S+VL,Γ1)′) is a quasi Gelfand triple For simplification S can be

imagined to be the identity mapping. We still have Γ0,Γ1 as a splitting with thin
boundaries of ∂Ω.

Corollary 8.4. The colligation

([
Gp

Lp

Kp

]
;

[
S+VL,Γ1

XH
(S+VL,Γ1

)′

])
with solution space

Z = H−1
(
HΓ0

(LH
∂ ,Ω)×H(L∂ ,Ω)

)
is a boundary control system.

Proof. Since Lp is closed on XH with domain Z, and Gp and Kp are continuous

with the graph norm of Lp, we have
[
Gp Lp Kp

]T
is closed. By construction Gp with

domain Z maps onto S+VL,Γ0
. Since Gp is one operator of a boundary triple for Lp,

the restriction Lp

∣∣
kerGp

is skew-adjoint and therefore a generator of a contraction

semigroup. q

Proposition 8.5. Let R ∈ L(SL2
π(Γ1)) be coercive. Then the colligation Ξ =([ 1√

2
(Gp+RKp)

Lp
1√
2

(Gp−RKp)

]
;

[
U
XH
Y

])
with U = Y = SL2

π(Γ1) endowed with ‖f‖U = ‖f‖Y =
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‖R−1/2f‖L2 and solution space

Z = {x ∈ H−1(HΓ0
(LH
∂ ,Ω)×H(L∂ ,Ω)) : Gpx,Kpx ∈ SL2

π(Γ1)}.

is a scattering energy preserving boundary control system

Proof. Let (xn, [Gpxn Lpxn Kpxn]T)n∈N be a sequence in [Gp Lp Kp]T (re-

stricted to Z) that converges to (x, [f y g]T) ∈ XH × U × XH × U . Since Lp

with domain H(P∂ ,Ω) is a closed operator and HΓ0
(LH
∂ ,Ω) ×H(L∂ ,Ω) is closed in

H(P∂ ,Ω), we conclude that x ∈ H−1(HΓ0
(LH
∂ ,Ω)×H(L∂ ,Ω)) and y = Lpx. Hence,

Gpxn converges in S+VL,Γ1
to Gpx and in SL2

π(Γ1) to f . Since (S+VL,Γ1
, SL2

π(Γ1),
(S+VL,Γ1)′) is a quasi Gelfand triple, we have Gpx = f . Analogously, we conclude
Kpx = g. Therefore, x ∈ Z and [Gp Lp Kp]T is closed, which implies that also[ 1√

2
(Gp +RKp) Lp

1√
2
(Gp −RKp)

]T
is closed.

By Example 7.8 and Theorem 7.6 Lp

∣∣
ker 1√

2
(Gp+RKp)

generates a contraction

semigroup.

The surjectivity of
[ Gp

Kp

]
and Example 7.8 gives the surjectivity of 1√

2
(Gp+RKp).

Since (VL, Gp,ΨKp) is a boundary triple for Lp, we have

2 Re〈Lpx, x〉XH = 2 Re〈Gpx,Kpx〉VL,V′L = 2 Re〈Gpx,Kpx〉L2
π(Γ1)

=
1

2

(
〈R−1Gpx,Gpx〉L2 + 2 Re〈Gpx,Kpx〉L2 + 〈RKpx,Kpx〉L2

)
− 1

2

(
〈R−1Gpx,Gpx〉L2 − 2 Re〈Gpx,Kpx〉L2 + 〈RKpx,Kpx〉L2

)
=
∥∥ 1√

2
(Gp +RKp)x

∥∥2

U −
∥∥ 1√

2
(Gp −RKp)x

∥∥2

Y ,

which makes Ξ scattering energy preserving. q

Remark 8.6. Clearly, the previous proposition holds also true for the operator triple[ 1√
2
(RKp +Gp) Lp

1√
2
(RKp −Gp)

]T
and for Gp and Kp being swapped. More-

over, replacing Lp by Lp + J , where J ∈ L(XH) is dissipative, yields a scattering
passive system.

Hence, the port-Hamiltonian system with input u and output y described by the
equations
√

2u(t, ζ) = πL
(
H(ζ)x(t, ζ)

)
LH +RLν

(
H(ζ)x(t, ζ)

)
L
, t ∈ R+, ζ ∈ Γ1,

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi
Pi
(
H(ζ)x(t, ζ)

)
+ P0

(
H(ζ)x(t, ζ)

)
, t ∈ R+, ζ ∈ Ω,

√
2y(t, ζ) = πL

(
H(ζ)x(t, ζ)

)
LH −RLν

(
H(ζ)x(t, ζ)

)
L
, t ∈ R+, ζ ∈ Γ1,

0 = πL
(
H(ζ)x(t, ζ)

)
LH , t ∈ R+, ζ ∈ Γ0,

x(0, ζ) = x0(ζ), ζ ∈ Ω,

(8.3)

is scattering passive and in particular well-posed, as the following corollary will
clarify. The mappings πL and Lν are used a little bit sloppy. There is always a
pointwise a.e. description for these mappings, but due to compact notation we use
πL and Lν .
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Corollary 8.7. The system (8.3) can be interpreted as the scattering energy pre-
serving boundary control system([

1√
2

(Gp+RKp)

Lp
1√
2

(Gp−RKp)

]
;

[
U
XH
Y

])
,

with the assumptions of Proposition 8.5 and S = I. Replacing Lp with Lp + J for
a dissipative J ∈ L(XH) yields a scattering passive boundary control system.

Corollary 8.8. With the setting of Proposition 8.5 the colligation([ Gp

Lp

Kp

]
;
[ SL2

π(Γ1)
XH

SL2
π(Γ1)

])
with solution space

Z = {x ∈ H−1(HΓ0
(LH
∂ ,Ω)×H(L∂ ,Ω)) : Gpx,Kpx ∈ SL2

π(Γ1)}

is impedance energy preserving.

Proof. This is a direct consequence of Proposition 8.5 for R = I. q

Note that the colligations in Corollary 8.4 and Corollary 8.8 are the same but the
solution spaces are slightly different. The colligation in Corollary 8.8 is in general
not necessarily a boundary control system.

Example 8.9 (Wave equation). Let ρ ∈ L∞(Ω) be the mass density and T ∈
L∞(Ω)n×n be the Young modulus, such that 1

ρ ∈ L
∞(Ω), T (ζ)H = T (ζ) and T (ζ) ≥

δI for a δ > 0 and almost every ζ ∈ Ω. Then the wave equation

∂2

∂t2
w(t, ξ) =

1

ρ(ξ)
div
(
T (ξ) gradw(t, ξ)

)
,

can be formulated as a port-Hamiltonian system by choosing the state variable

x(t, ζ) =
[
ρ(ξ) ∂∂tw(t,ζ)

gradw(t,ζ)

]
. Then the PDE looks like

ẋ =

[
0 div

grad 0

]
︸ ︷︷ ︸

=P∂

[ 1
ρ 0

0 T

]
︸ ︷︷ ︸

=H

x.

This is shown in section 3 of [9]. This is exactly the port-Hamiltonian system we
get from choosing L as in Example 3.3. From Example 6.2 and Example 6.6 we
know that the boundary operators are γ0 and the extension of ν · γ0. Therefore,

√
2u(t, ζ) = ν ·

(
T (ζ) gradw(t, ζ)

)
+
∂

∂t
w(t, ζ), t ∈ R+, ζ ∈ Γ1,

∂2

∂t2
w(t, ξ) =

1

ρ(ξ)
div
(
T (ξ) gradw(t, ξ)

)
, t ∈ R+, ζ ∈ Ω,

√
2y(t, ζ) = ν ·

(
T (ζ) gradw(t, ζ)

)
− ∂

∂t
w(t, ζ), t ∈ R+, ζ ∈ Γ1,

0 =
∂

∂t
w(t, ζ), t ∈ R+, ζ ∈ Γ0,

can be modeled by a scattering passive and well-posed boundary control system, by
Corollary 8.7.
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Example 8.10 (Maxwell’s equations). Let Ω ⊆ R3 be as in Assumption 3.1 and
L = (Li)

3
i=1 be as in Example 3.4. In this example we have already showed L∂ = rot

and Lνf = ν × f . The corresponding differential operator for the port-Hamiltonian
PDE is

P∂ =

[
0 L∂
LH
∂ 0

]
=

[
0 rot
− rot 0

]
.

We write the state as x = [ DB ], where D,B ∈ K3. We also want to introduce the
positive scalar functions ε, µ, g and r such that

ε,
1

ε
, µ,

1

µ
, g ∈ L∞(Ω) and r,

1

r
∈ L∞(Γ1).

Furthermore, we define the Hamiltonian density by H(ζ) :=

[
1
ε(ζ)

0

0 1
µ(ζ)

]
, where each

block is a 3× 3 matrix. At last we define [ EH ] := H [ DB ], so that we have the same
notation as in [16].

The projection on ranLν is given by g 7→ (ν×g)×ν, therefore π̄L is the extension
of g 7→ (ν×γ0g)×ν to H(LH

∂ ,Ω). The mapping πτ from [16] can be compared with
π̄L but is not exactly the same, since they have different domains and codomains.
We have πτ : H1(Ω)3 → Vτ ⊆ L2(∂Ω)3 and π̄L : H(rot,Ω) → VL is its extension, if
we change the norms in the domain and codomain of πτ . However, VL cannot be
embedded into L2(∂Ω)3.

Note that by Example A.4 neither π̄L nor L̄Γ1
ν map even into L2

π(Γ1), therefore
it is really necessary to use a quasi Gelfand triple instead of an “ordinary” Gelfand
triple.

The corresponding boundary control system is a model for Maxwell’s equations
in the following form

√
2u(t, ζ) = r(ζ)ν(ζ)×H(t, ζ) + (ν(ζ)×E(t, ζ))× ν(ζ), t ∈ R+, ζ ∈ Γ1,

∂

∂t
D(t, ζ) = rot H(t, ζ)− g(ζ)E(t, ζ), t ∈ R+, ζ ∈ Ω,

∂

∂t
B(t, ζ) = − rot E(t, ζ), t ∈ R+, ζ ∈ Ω,

√
2y(t, ζ) = r(ζ)ν(ζ)×H(t, ζ)− (ν(ζ)×E(t, ζ))× ν(ζ), t ∈ R+, ζ ∈ Γ1,

0 = (ν(ζ)×E(t, ζ))× ν(ζ), t ∈ R+, ζ ∈ Γ0,

and is scattering passive by Corollary 8.7, where we set J =
[−g 0

0 0

]
H.

Note that, following the trick in [16, Proposition 6.1], Gauß’s law div D = ρ
is satisfied by simply defining ρ by this formula and Gauß’s law for magnetism
div B = 0 is automatically satisfied, if the initial condition satisfies it. This can be
seen, if we apply div on both sides of ∂

∂tµH = − rot E and noting that div µH =
div B is constant in time (div rot = 0). This has to be understood in the sense of
distributions. However, for classical solutions this can also be understood in the
classical sense.
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Example 8.11 (Mindlin plate). Let Ω ⊆ R2 be as in Assumption 3.1. Let us
consider the differential operator P∂ and the skew-symmetric matrix P0 given by

P∂ :=



0 0 0 0 0 0 ∂1 ∂2

0 0 0 ∂1 0 ∂2 0 0
0 0 0 0 ∂2 ∂1 0 0
0 ∂1 0 0 0 0 0 0
0 0 ∂2 0 0 0 0 0
0 ∂2 ∂1 0 0 0 0 0
∂1 0 0 0 0 0 0 0
∂2 0 0 0 0 0 0 0


, P0 :=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0


.

It is easy to derive the corresponding P = (Pi)
2
i=1 and L = (Li)

2
i=1. We define a

Hamiltonian density by

H =



1
ρh 0 0 0 0 0 0 0

0 12
ρh3 0 0 0 0 0 0

0 0 12
ρh3 0 0 0 0 0

0 0 0

Db

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 Ds0 0 0 0 0 0


,

where ρ, h are strictly positive functions, Db(ζ) is a coercive 3 × 3 matrix and
Ds(ζ) is a coercive 2× 2 matrix, such that all conditions on H in Definition 4.1 are
satisfied. We write the state variable x as

α :=
[
ρhv ρh

3

12w1 ρh
3

12w2 κ1,1 κ2,2 κ1,2 γ1,3 γ2,3

]T
,

where we stick to the notation in [2] except that we renamed the coordinates x, y
and z as 1, 2 and 3. Furthermore, we have

e := Hα =
[
v w1 w2 M1,1 M2,2 M1,2 Q1 Q2

]T
.

We don’t want to go into details about the physical meaning of these state variables.
We just want to make it easier to translate the results into the notation of [2]. So
the port-Hamiltonian PDE

∂

∂t
x = (P∂ + P0)Hx looks like

∂

∂t
α = (P∂ + P0)e.

The corresponding boundary operator is

Lνf =

 0 0 0 ν1 ν2

ν1 0 ν2 0 0
0 ν2 ν1 0 0



f1

f2

f3

f4

f5

 =


ν ·
[
f4

f5

]
ν ·
[
f1

f3

]
ν ·
[
f3

f2

]
 .

Since ‖ν(ζ)‖ = 1, at least ν1(ζ) 6= 0 or ν2(ζ) 6= 0. This can be used to show that
ranLν = L2(∂Ω)3. Therefore, π̄L is the extension of the boundary trace operator
γ0 to H(LH

∂ ,Ω).
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Since there is no direct physical meaning to the boundary variables

[
0 Lν

]
e =


ν ·
[
Q1

Q2

]
ν ·
[
M1,1

M1,2

]
ν ·
[
M1,2

M2,2

]
 and

[
πL 0

]
e =

 vw1

w2

 ,
we define η :=

[−ν2
ν1

]
and apply the unitary transformation S =

[
1 0 0
0 ν1 ν2
0 −ν2 ν1

]
to obtain

 Qν
Mν,ν

Mν,η

 := S


ν ·
[
Q1

Q2

]
ν ·
[
M1,1

M1,2

]
ν ·
[
M1,2

M2,2

]
 and

 v
wν
wη

 := (S∗)−1︸ ︷︷ ︸
=S

 vw1

w2

 ,
which have a physical interpretation; see [2]. Hence, by Corollary 8.8 the system

u =
[
Qν Mν,ν Mν,η

]T
, on R+ × Γ1,

∂

∂t
α = (P∂ + P0)e, on R+ × Ω,

y =
[
v wν wη

]T
, on R+ × Γ1,

0 =
[
v wν wη

]T
, on R+ × Γ0,

for the Mindlin plate is impedance energy preserving, which is exactly the system
in [2].

Appendix A. Counter examples and technical lemmas. The next example
shows that it is possible to have item (i) and item (ii) of a “boundary triple” for
an operator A (Definition 2.1) without A being the adjoint of a skew-symmetric
operator. Moreover, it shows that in this situation Lemma 2.2 does not hold. This
demonstrates the importance of A being the adjoint of a skew-symmetric operator
in the definition.

Example A.1. Let A =

[
0 d

dξ
d
dξ 0

]
be an operator on L2(0, 1)2 with domA =

H1(0, 1)2. By Remark 3.7 the operator A is the adjoint of a skew-symmetric oper-
ator. Integration by parts yields

〈Af, g〉+ 〈f,Ag〉 =

∫ 1

0

〈[
f ′2
f ′1

]
,

[
g1

g2

]〉
dξ +

∫ 1

0

〈[
f1

f2

]
,

[
g′2
g′1

]〉
dξ

=

∫ 1

0

(f ′2g1 + f ′1g2 + f1g
′
2 + f2g

′
1) dξ = f2g1

∣∣∣1
0

+ f1g2

∣∣∣1
0

= f2(1)g1(1)− f2(0)g1(0) + f1(1)g2(1)− f1(0)g2(0)

=

〈[
f2(1)
−f2(0)

]
︸ ︷︷ ︸

B2f

,

[
g1(1)
g1(0)

]
︸ ︷︷ ︸
B1g

〉
+

〈[
f1(1)
f1(0)

]
︸ ︷︷ ︸
B1f

,

[
g2(1)
−g2(0)

]
︸ ︷︷ ︸

B2g

〉
.

Defining B1f :=
[
f1(1)
f1(0)

]
and B2f :=

[
f2(1)
−f2(0)

]
yields

〈Af, g〉+ 〈f,Ag〉 = 〈B1f,B2g〉+ 〈B2f,B1g〉. (A.1)
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The mapping
[
B1

B2

]
: domA→ R4 is surjective (this can be seen by choosing f1 and

f2 to be linear interpolations). So (R2, B1, B2) is a boundary triple for A.

We define Â as the restriction of A on H1
{1}=0(0, 1)×H1

{0}={1}(0, 1), where

H1
{1}=0(0, 1) := {f ∈ H1(0, 1) : f(1) = 0}, and

H1
{0}={1}(0, 1) := {f ∈ H1(0, 1) : f(0) = f(1)}.

Therefore, we can reformulate (A.1) for f, g ∈ dom Â

〈Âf, g〉+ 〈f, Âg〉 = −f1(0)g2(0) + f2(0)(−g1(0))

By defining F1f := −f1(0) and F2f := f2(0) we again have that
[
F1

F2

]
: dom Â→ R2

is surjective. However Â is not the adjoint of a skew-symmetric operator. If it were,
then (R2, F1, F2) would be a boundary triple for Â and

Â∗ = −Â
∣∣
kerF1∩kerF2

= −A
∣∣
H1

0 (0,1)2 = A∗.

which is not true since Â is certainly not dense in A. In fact, with the boundary
triple for A we get that the adjoint of Â is −A

∣∣
H1
{0}={1}(0,1)×H1

{0}=0
(0,1)

.

Lemma A.2. Let (xn)n∈N be a sequence in a normed vector space X that con-
verges w.r.t. the weak-∗ topology to an x0 ∈ X. Then (xn)n∈N is bounded i.e.
supn∈N‖xn‖X < +∞.

Proof. Let ι denote the canonical embedding from X into X ′′ that maps x to
〈x, .〉X,X′ . Then, by assumption, for every fixed φ ∈ X ′ (ιxn)(φ) → (ιx0)(φ),
in particular supn∈N|(ιxn)(φ)| < ∞. The principle of uniform boundedness yields
supn∈N‖ιxn‖X′′ < +∞. Since ‖ιx‖X′′ = ‖x‖X for every x ∈ X, this proves the
assertion. q

Lemma A.3. Let (xn)n∈N be a weak convergent sequence in a Hilbert space H with
limit x. Then there exists a subsequence (xn(k))k∈N such that

∥∥∥∥ 1

N

N∑
k=1

xn(k) − x
∥∥∥∥→ 0.

Proof. We assume that x = 0. For the general result we just need to replace xn by
xn − x.

We define the subsequence inductively: n(1) = 1 and for k > 1 we choose n(k)
such that

|〈xn(k), xn(j)〉| ≤
1

k
for all j < k.

This is possible, because (xn)n∈N converges weakly to 0. Note that in Hilbert spaces
the weak topology and the weak-∗ topology are the same. Hence, by Lemma A.2
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supn∈N‖xn‖ ≤ C. This yields

∥∥∥∥ 1

N

N∑
k=1

xn(k)

∥∥∥∥2

=
1

N2

N∑
k=1

N∑
j=1

〈xn(k), xn(j)〉

=
1

N2

N∑
k=1

‖xn(k)‖2 +
1

N2

N∑
j=1

N∑
k=j+1

2 Re〈xn(k), xn(j)〉

≤ 1

N
C2 +

2

N2

N∑
j=1

N∑
k=j+1

1

k
≤ C2

N
+

1

N
ln(N)→ 0. q

Example A.4. Let Ω = (0, 1)3 and F : Ω→ R be defined by

F (x) =
1

‖x‖2/52

= (x2
1 + x2

2 + x2
3)−

2/10.

Then we define f = gradF , which is

f(x) =

− 4
10x1(x2

1 + x2
2 + x2

3)−6/5

− 4
10x2(x2

1 + x2
2 + x2

3)−6/5

− 4
10x3(x2

1 + x2
2 + x2

3)−6/5

 .
Hence, rot f = rot gradF = 0. We will show that f is in L2(Ω)3:

∫
Ω

‖f(x)‖22 dx =

∫
Ω

3∑
i=1

16

100
x2
i (x

2
1 + x2

2 + x2
3)−

12/5 dx =
16

100

∫
Ω

(x2
1 + x2

2 + x2
3)−

7/5 dx

≤
∫
B√3(0)

(x2
1 + x2

2 + x2
3)−

7/5 dx = 2π

∫ π
2

−π
2

∫ √3

0

r−
14/5r2 cos θ dr dθ

= 4π

∫ √3

0

r−
4/5 dr = 4π5r

1/5

∣∣∣∣
√

3

0

< +∞.

Therefore, f is even in H(rot,Ω). Let ν denote the normal vector on ∂Ω. Then we

show that ν×f
∣∣
∂Ω

is not in L2(∂Ω)3: Note that ν(ζ) =
[

0
0
−1

]
on [0, 1]× [0, 1]×{0}.

Therefore,

ν(ζ)× f(ζ) =

− 4
10ζ2(ζ2

1 + ζ2
2 )−6/5

4
10ζ1(ζ2

1 + ζ2
2 )−6/5

0

 for ζ ∈ [0, 1]× [0, 1]× {0}

and consequently∫
∂Ω

‖ν(ζ)× f(ζ)‖22 dζ ≥
∫

[0,1]×[0,1]×{0}
‖ν(ζ)× f(ζ)‖22 dζ

=
16

100

∫
[0,1]×[0,1]

(ξ2
1 + ξ2

2)−
7/5 dξ.
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Since [0, 1]× [0, 1] contains the circular sector with arc π
2 and radius 1, we further

have (by applying polar coordinates)

≥ 16

100

π

2

∫ 1

0

r−
14/5r dr =

16

100

π

2

∫ 1

0

r−
9/5 dr

= − 16

100

π

2

5

4
r−

4/5

∣∣∣∣1
0

= +∞.

Hence, f ∈ H(rot,Ω), but ν × f
∣∣
∂Ω

/∈ L2(∂Ω)3. Since

(ν(ζ)× f(ζ))× ν(ζ) =

− 4
10ζ1(ζ2

1 + ζ2
2 )−6/5

− 4
10ζ2(ζ2

1 + ζ2
2 )−6/5

0

 for ζ ∈ [0, 1]× [0, 1]× {0},

we also have
(
ν × f

∣∣
∂Ω

)
× ν /∈ L2(∂Ω)3.
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