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Abstract

We regard anisotropic Maxwell’s equations as a boundary control and observation system on a bounded 
Lipschitz domain. The boundary is split into two parts: one part with perfect conductor boundary conditions 
and the other where the control and observation takes place. We apply a feedback control law that stabilizes 
the system in a semi-uniform manner without any further geometric assumption on the domain. This will be 
achieved by separating the equilibriums from the system and show that the remaining system is described 
by an operator with compact resolvent. Furthermore, we will apply a unique continuation principle on the 
resolvent equation to show that there are no eigenvalues on the imaginary axis.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

Let � ⊆ R3 be a bounded and connected strongly Lipschitz domain, which boundary is split 
into �0 and �1 �= ∅ (�0 can be empty). Then we regard Maxwell’s equations as a boundary 
control and observation system

* Corresponding author.
E-mail addresses: nathanael.skrepek@math.tu-freiberg.de (N. Skrepek), marcus.waurick@math.tu-freiberg.de

(M. Waurick).
https://doi.org/10.1016/j.jde.2024.03.021
0022-0396/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2024.03.021&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2024.03.021
http://www.elsevier.com/locate/jde
http://creativecommons.org/licenses/by/4.0/
mailto:nathanael.skrepek@math.tu-freiberg.de
mailto:marcus.waurick@math.tu-freiberg.de
https://doi.org/10.1016/j.jde.2024.03.021
http://creativecommons.org/licenses/by/4.0/


N. Skrepek and M. Waurick Journal of Differential Equations 394 (2024) 345–374
u(t, ζ ) = πτ E(t, ζ ), (boundary input) t ≥ 0, ζ ∈ �1, (1a)

∂
∂t

D(t, ζ ) = curl H(t, ζ ), (Faraday/Maxwell law) t ≥ 0, ζ ∈ �, (1b)

∂
∂t

B(t, ζ ) = − curl E(t, ζ ), (Ampére/Maxwell law) t ≥ 0, ζ ∈ �, (1c)

div D(t, ζ ) = ρ(ζ ), (Gauß law) t ≥ 0, ζ ∈ �, (1d)

div B(t, ζ ) = 0, (Gauß law for magnetism) t ≥ 0, ζ ∈ �, (1e)

D(t, ζ ) = ε(ζ )E(t, ζ ), (material law) t ≥ 0, ζ ∈ �, (1f)

B(t, ζ ) = μ(ζ )H(t, ζ ), (material law) t ≥ 0, ζ ∈ �, (1g)

πτ E(t, ζ ) = 0, (perfect conductor) t ≥ 0, ζ ∈ �0, (1h)

γνB(t, ζ ) = 0, (normal boundary cond.) t ≥ 0, ζ ∈ �0, (1i)

E(0, ζ ) = E0(ζ ), (initial value) ζ ∈ �, (1j)

H(0, ζ ) = H0(ζ ), (initial value) ζ ∈ �, (1k)

y(t, ζ ) = γτ H(t, ζ ), (boundary output) t ≥ 0, ζ ∈ �1, (1l)

with feedback law

u(t, ζ ) = −k(ζ )y(t, ζ ), t ≥ 0, ζ ∈ �1. (1m)

The traces πτ E, γτ H and γνB are, roughly speaking, (ν × E
∣∣
∂�

) × ν, ν × H
∣∣
∂�

and ν · B
∣∣
∂�

, 
respectively, for details see Appendix B. The permittivity ε and the permeability μ are Lipschitz 
continuous matrix-valued functions (i.e., we allow anisotropic and inhomogeneous materials) 
such that c−1 ≤ ε ≤ c and c−1 ≤ μ ≤ c for a c > 0 (in the sense of positive definiteness). (The 
Lipschitz continuity of ε and μ is necessary to apply a unique continuation principle.) The feed-
back operator k is also matrix-valued and satisfies c−1 ≤ k ≤ c for a c > 0 (w.l.o.g. the same 
c)—we do not ask for any further regularity but measurability. The charge density ρ can be any 
L2(�) function.

Fig. 1. Feedback illustration.

The boundary feedback law illustrated in Fig. 1 results in an impedance, Leontovich or Silver–
Müller boundary condition1

πτ E(t, ζ ) + k(ζ )γτ H(t, ζ ) = 0, t ≥ 0, ζ ∈ �1.

1 Impedance boundary conditions can sometimes have different forms, but by inverting and/or unitarily transforming 
k they are equivalent to the presented version.
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Our goal is to show that the system (1) is semi-uniformly stable, i.e., there exists a uniform 
decay rate such that every solution converges to an equilibrium state with this rate. More precisely 
this means that the corresponding semigroup is semi-uniformly stable, see Definition 4.1. Semi-
uniform stability is a concept that was introduced in [2]. It is a stability concept that is between 
strong stability and exponential stability, i.e., exponential stability implies semi-uniform stability 
and semi-uniform stability implies strong stability.

Stability of Maxwell’s equations with impedance boundary conditions have been studied in 
several works. The goal was always to prove exponential stability and therefore additional as-
sumptions were added.

• In [11] the author regarded a domain � with C1 boundary and assumed ε = μ = 1. The 
damping acts on the entire boundary.

• In [17] � has a C∞ boundary and �1 satisfies the geometric control condition. The author 
worked with constant and scalar ε and μ.

• In [8] the authors regard a domain � with C∞ boundary and ε and μ are scalar C∞ functions. 
The damping acts on the entire boundary and they additionally assume the existence of a 
ζ0 ∈ � such that

(ζ − ζ0)∇ε ≥ 0 and (ζ − ζ0)∇μ ≥ 0 in �.

However, they allow k to be in a class that also contains certain nonlinear operators.
• In [14] � has a C2 boundary and the damping acts on the entire boundary ∂�. The functions 

ε and μ are scalar C1 and may be non-autonomous. The function k can be in a certain 
nonlinear class.

• In [1] � has a C∞ boundary and the damping acts on the entire boundary. In that work there 
is an additional time delay in the boundary condition and a certain non-linearity is allowed 
for k.

• In [19] � is strongly star-shaped and has a C5 boundary and the damping acts on the en-
tire boundary. They allow ε and μ to be even state-dependent, i.e., quasilinear Maxwell’s 
equations.

Note that the entire boundary ∂� always satisfies the geometric control condition. Hence, all 
of the above references work, at least implicitly, with this condition. Apart from [17] none of 
these references work with split/mixed boundary conditions.

There are also other effects that can stabilize Maxwell’s equations like distributed damping or 
memory terms, see e.g., [15,7].

We will regard a domain � with Lipschitz boundary ∂� that is split into �0 and �1. The 
boundary damping acts only on one part, namely �1—note that �1 does not need to be connected. 
Moreover, ε and μ are Lipschitz continuous positive matrix-valued functions that are uniformly 
bounded from above and below. However, we do not show exponential stability, but semi-uniform 
stability and we do not prove an explicit decay rate. Most likely such a decay rate will depend on 
the geometry of � and �1.

However, in contrast to the listed literature we can, for example, deal with anisotropic 
Maxwell’s equations on a cube that is damped on one face of the cube.

We will follow a similar approach as in [10], where semi-uniform stability for the wave equa-
tions was shown. That is splitting the equations in a time independent (for equilibriums) and a 
time dependent (for the “actual” dynamic) part and showing that the differential operator that 
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corresponds to the time dependent part has no spectrum on the imaginary axis. This will be 
done by showing that the operator has a compact resolvent and employing a unique continuation 
principle.

The main theorem of this work reads as follows.

Theorem 1.1. Let 
[

E0
H0

]
∈
[

Ĥ(curl,�)∩ε−1H(div,�)

Ĥ�1 (curl,�)∩μ−1Ĥ�0 (div,�)

]
be an initial value that satisfies the bound-

ary conditions

πτ E0 = 0, γνH0 = 0 on �0 and πτ E0 + kγτ H0 = 0 on �1,

and Gauß laws div εE0 = ρ and divμH0 = 0. Then the corresponding solution 
[

E
H

]
(t, ζ ) of (1)

converges to an equilibrium state 
[

Ee
He

]
(ζ ) for t → ∞. More precisely there exists a monotone 

decreasing f : [0, +∞) → [0, +∞) with limt→+∞ f (t) = 0, which is independent of the initial 
values such that∥∥∥∥[E

H

]
(t, ·) −

[
Ee
He

]∥∥∥∥
L2(�)

≤ f (t)

(∥∥∥∥[E0
H0

]
−
[

Ee
He

]∥∥∥∥
L2(�)

+
∥∥∥∥[ curl E0

curl H0

]∥∥∥∥
L2(�)

)
.

Remark 1.2. Clearly, we can replace the L2 norm in the previous theorem by a weighted L2

norm, e.g., the energy norm that is induced by ε and μ.

Remark 1.3. Note that the connectedness of � is not really necessary as long as �1 has parts on 
every connected component.

Remark 1.4. We can actually also allow inhomogeneous boundary conditions for πτE and γνH
on �0, because they will disappear in the equilibrium. We only have to make sure that the inho-
mogeneity satisfies certain compatibility conditions (not every L2 function is in the range of πτ ).

This work is structured in the following way: We will start by recalling the Sobolev spaces that 
correspond to our differential operators in Section 2. Then we will split the system into a static 
and a dynamic part in Section 3. In Section 4 we show that the dynamic part is semi-uniformly 
stable by a compact embedding and a unique continuation principle, which finally implies the 
main result Theorem 1.1.

2. Preliminary

For � ⊆Rd open and � ⊆ ∂� open we use the following notation (as in [3])

C̊∞(�) := {
f ∈ C∞(Rd)

∣∣ suppf ⊆ � is compact
}

C̊∞
� (�) :=

{
f
∣∣
�

∣∣∣f ∈ C̊∞(Rd),dist(�, suppf ) > 0
}
.

We will regard an open, bounded and connected � ⊆R3 with strongly Lipschitz boundary. For 
g ∈ C̊∞(R3) and f ∈ C̊∞(R3)3 we define the differential operators
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∇g =
⎡⎣∂1g

∂2g

∂3g

⎤⎦ , divf = ∂1f1 + ∂2f2 + ∂3f3 and curlf =
⎡⎣∂2f3 − ∂3f2

∂3f1 − ∂1f3
∂1f2 − ∂2f1

⎤⎦ .

These operators can be regarded as unbounded operators from L2(�)k1 to L2(�)k2 (with k1, k2 ∈
N suitable). In the further we will omit the exponent k at L2(�)k , H1(�)k , C̊∞(�)k , etc., if they 
are clear from the context. We introduce the maximal domain of these operators on L2(�):

H1(�) = {g ∈ L2(�) |∇g ∈ L2(�)3},
H(div,�) = {f ∈ L2(�)3 |divf ∈ L2(�)},

and H(curl,�) = {f ∈ L2(�)3 | curlf ∈ L2(�)3}, respectively.

For g ∈ C̊∞(R3) and f ∈ C̊∞(R3)3 there is the well-known integration by parts formula

〈divf,g〉L2(�) + 〈f,∇g〉L2(�) = 〈
ν · f ∣∣

∂�
, g
∣∣
∂�

〉
L2(∂�)

,

where ν denotes the outward pointing unit normal vector on the boundary. This formula can be 
extended to the maximal domain of the respective differential operator, such that we have for 
g ∈ H1(�) and f ∈ H(div, �)

〈divf,g〉L2(�) + 〈f,∇g〉L2(�) = 〈γνf, γ0g〉H−1/2(∂�),H1/2(∂�)
,

where γ0, the boundary trace, is the extension of g �→ g
∣∣
∂�

to H1(�) and γν , the normal 
trace, is the extension of f �→ ν · f

∣∣
∂�

to H(div, �). These mappings map onto H1/2(∂�) and 
H−1/2(∂�) respectively, where H1/2(∂�) is range of γ0 endowed with the range norm of H1(�), 
and H−1/2(∂�) is its dual space.

Basically, for curl there is a similar approach to extend the integration by parts formula〈
curlf,g

〉
L2(�)

+ 〈
f,− curlg

〉
L2(�)

= 〈
ν × f, (ν × g) × ν

〉
L2(∂�)

that is valid for f, g ∈ C̊∞(R3) to the maximal domain of curl. We present this in Appendix B.
Note that every w ∈C3 can be represented as

w = (ν(ζ ) × w) × ν(ζ )︸ ︷︷ ︸
tangential part

+ (ν(ζ ) · w)ν(ζ )︸ ︷︷ ︸
normal part

for a.e. ζ ∈ ∂�.

Hence, we call πτ , the extension of g �→ (ν×g
∣∣
∂�

) ×ν, the tangential trace and γτ , the extension 
of f �→ ν×g

∣∣
∂�

, the twisted tangential trace. If we want to emphasize that we are only interested 
on the part �1 ⊆ ∂� of the tangential trace we denote this by πτ

∣∣
�1

and γτ

∣∣
�1

for details see 
Appendix B.

For two Hilbert space X and Y we will use the notation[
X

Y

]
:= X × Y.
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For a strictly positive and bounded operator P on L2(�) we introduce

〈x, y〉P := 〈x,Py〉L2(�) = 〈Px,y〉L2(�), (2)

which establishes an equivalent inner product on L2(�). Corresponding to this new inner product 
we have ⊥P and ⊕P .

For a strongly Lipschitz domain � and � ⊆ ∂� we say that the pair (�, �) is a strongly 
Lipschitz pair, roughly speaking, if also ∂� is strongly Lipschitz. For details see [3,24].

Additionally to the restricted tangential traces (πτ

∣∣
�

and γτ

∣∣
�

), we introduce the extension of 
g �→ ν · g∣∣

�
to H(div, �) denoted by γν

∣∣
�
g.

Furthermore, we define

H̊�(curl,�) :=
{
f ∈ L2(�)

∣∣∣ curlf ∈ L2(�),πτ

∣∣
�
f = 0

}
Ĥ�(curl,�) :=

{
f ∈ L2(�)

∣∣∣ curlf ∈ L2(�),πτ

∣∣
�
f ∈ L2(�)

}
and

H̊�(div,�) :=
{
f ∈ L2(�)

∣∣∣ divf ∈ L2(�), γν

∣∣
�
f = 0

}
Ĥ�(div,�) :=

{
f ∈ L2(�)

∣∣∣ divf ∈ L2(�), γν

∣∣
�
f ∈ L2(�)

}
,

see e.g., [16]. Note that there is a strong and weak approach to the previous spaces, i.e., as limits 
of smooth function or via representation in an inner product. It is far from trivial that these 
approaches coincide. However, luckily for a strongly Lipschitz pair (�, �) this is covered in [3]
for homogeneous boundary conditions and in [24] for L2 boundary conditions. Similar to [6] we 
denote the spaces with vanishing curl and div, respectively, by

H(curl 0,�) := ker curl,

H̊�(curl 0,�) := H̊�(curl,�) ∩ ker curl,

Ĥ�(curl 0,�) := Ĥ�(curl,�) ∩ ker curl,

H(div 0,�) := ker div,

H̊�(div 0,�) := H̊�(div,�) ∩ ker div,

Ĥ�(div 0,�) := Ĥ�(div,�) ∩ ker div .

Moreover, we define the cohomology groups for δ ∈ Lb(L2(�)) strictly positive by

H�a,�b,δ(�) := H̊�a (curl 0,�) ∩ δ−1H̊�b
(div 0,�)

Hδ,�a,�b
(�) := δH�a,�b,δ(�)

= δH̊�a (curl 0,�) ∩ H̊�b
(div 0,�).

3. Split the system

In this section we will split our system in a time invariant part and the remaining dynamic part. 
This will simplify the analysis of the spectrum of the (remaining) dynamic part. From a certain 
point of view we factor out the eigenvectors corresponding to the eigenvalue 0 of the differential 
operator that describes the dynamic.
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We can write the system (1b)-(1c) as

∂

∂t

[
D
B

]
=
[

0 curl
− curl 0

][
ε−1 0

0 μ−1

][
D
B

]
or as

∂

∂t

[
ε 0
0 μ

][
E
H

]
=
[

0 curl
− curl 0

][
E
H

]
.

From a semigroup perspective the first version is in a better form. The second version is for 
instance favored by the approach in [20].

In order to analyze the stability of the system we have to separate the equilibrium states from 
the rest of the system. We call the remaining system the “true dynamic”.

By setting all time derivatives to zero in (1), we obtain the equations for the equilibrium states.

curl E = 0, curl H = 0, (3a)

div εE = ρ, divμH = 0, (3b)

πτ

∣∣
�0

E = 0, γν

∣∣
�0

μH = 0, (3c)

πτ

∣∣
�1

E = −kh, γτ

∣∣
�1

H = h, (3d)

where h is determined by the traces of the initial values. This static system is solvable by [3, 
Thm. 5.6]. Note that if � is not simply connected, then the cohomology spaces

H∂�,∅,ε(�) and H�1,�0,μ(�)

contain more than the zero vector. Hence, the solutions of (3) are not unique, because for a 

solution 
[

Ee
He

]
also 

[
Ee
He

]
+
[

Ẽ
H̃

]
solves (3), if 

[
Ẽ
H̃

]
∈
[ H∂�,∅,ε (�)

H�1,�0,μ(�)

]
.

For the “true” dynamic we regard the operator[
0 curl

− curl 0

][
ε−1 0

0 μ−1

]
with the boundary conditions

πτ

∣∣
�0

ε−1D = 0 and πτ

∣∣
�1

ε−1D + kγτ

∣∣
�1

μ−1B = 0.

Note that in general πτ

∣∣
�1

and γτ

∣∣
�1

map into different spaces. Hence, in order to meaning-
fully regard the second boundary condition we restrict ourselves to all those elements that are 
mapped into the pivot space L2

τ (�1) under πτ

∣∣
�1

, γτ

∣∣
�1

.2 Combined with the boundary condition 

2 One can also use quasi Gelfand triple theory to regard the boundary condition in a larger space (that contains Vτ (�1)

and V×
τ (�1)), but in the end this only implies that all vector fields D, B whose tangential traces satisfy this condition in 

the larger space are already in the pivot space L2
τ (�1).
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πτ

∣∣
�0

ε−1D = 0 we can say that ε−1D has an L2 tangential trace on the entire boundary. Hence, 
in order to satisfy our boundary conditions we require/assume that

E = ε−1D ∈ Ĥ∂�(curl,�) ∩ H̊�0(curl,�) and H = μ−1B ∈ Ĥ�1(curl,�).

Summarized we regard the following operator and domain

A0 =
[

0 curl
− curl 0

] =:H︷ ︸︸ ︷[
ε−1 0

0 μ−1

]
domA0 =

{[
D
B

]
∈H−1

[
Ĥ∂�(curl,�) ∩ H̊�0(curl,�)

Ĥ�1(curl,�)

]
∣∣∣∣πτ

∣∣
�1

ε−1D + kγτ

∣∣
�1

μ−1B = 0

}
= H−1

{[
E
H

]
∈
[

Ĥ∂�(curl,�) ∩ H̊�0(curl,�)

Ĥ�1(curl,�)

] ∣∣∣∣ πτ

∣∣
�1

E + kγτ

∣∣
�1

H = 0

}
.

(4)

The operator A0 is a generator of a contraction semigroup as we will explain in Appendix B.4. 
Note that H : L2(�) → L2(�) is a strictly positive and bounded operator, by the assumptions on 
ε and μ. It comes very natural to use 〈·, ·〉H as an inner product, since the corresponding norm 
is the energy norm in the state space.

In order to satisfy the remaining conditions we define the state space

XH :=
{[

D
B

] ∣∣∣ div D = 0,div B = 0, γν

∣∣
�0

B = 0
}

∩
[
Hε,∂�,∅(�)

Hμ,�1,�0(�)

]⊥H
.

Clearly, XH ⊆ L2(�). Note that

[
Hε,∂�,∅(�)

Hμ,�1,�0(�)

]⊥H
=
[
Hε,∂�,∅(�)⊥ε−1

Hμ,�1,�0(�)
⊥

μ−1

]
.

The intersection with 
(
Hε,∂�,∅(�) ×Hμ,�1,�0(�)

)⊥H factors out all solutions in Hε,∂�,∅(�) ×
Hμ,�1,�0(�), because these are static solutions and already included in the static solutions (as 
difference of two solutions of (3)).

The next theorem is [3, Thm. 5.3].

Theorem 3.1 (Helmholtz decomposition I). Let (�, �a) be a strongly Lipschitz pair and �b =
∂� \ �a , and δ ∈ L∞(�; C3×3) such that c−1 ≤ δ ≤ c a.e. for some c > 0. Then

L2(�) = ∇H̊1
�a

(�) ⊕δ H�a,�b,δ(�) ⊕δ δ−1 curl H̊�b
(curl,�)

We will make a slight modification of the previous Helmholtz decomposition, that better fits 
our situation.
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Corollary 3.2 (Helmholtz decomposition II). Let (�, �a) be a strongly Lipschitz pair and �b =
∂� \ �a , and δ ∈ L∞(�; C3×3) such that c−1 ≤ δ ≤ c a.e. for some c > 0. Then

L2(�) = δ∇H̊1
�a

(�) ⊕δ−1 Hδ,�a,�b
(�) ⊕δ−1 curl H̊�b

(curl,�)

Proof. By Theorem 3.1 we know that every f ∈ L2(�) can be written as f = f1 + f2 + f3
with f1 ∈ ∇H̊1

�a
(�), f2 ∈H�a,�b,δ(�) and f3 ∈ δ−1 curl H̊�b

(curl, �). Since δ is bijective, every 
g ∈ L2(�) can be written as

g = δf = δf1︸︷︷︸
∈δ∇H̊1

�a
(�)

+ δf2︸︷︷︸
∈Hδ,�a ,�b

(�)

+ δf3︸︷︷︸
∈curl H̊�b

(curl,�)

.

Hence, it is left to show that these spaces are still orthogonal. For f ⊥δ g we have

〈δf, δg〉δ−1 = 〈δf,g〉L2(�) = 〈f,g〉δ = 0

and consequently the sum δH̊1
�a

(�) + Hδ,�a,�b
(�) + curl H̊�b

(curl, �) is orthogonal w.r.t. 
〈·, ·〉δ−1 . �
Corollary 3.3. Let (�, �a) be a strongly Lipschitz pair, �b = ∂� \ �a and δ ∈ L∞(�; C3×3)

such that c−1 ≤ δ ≤ c a.e. for some c > 0. Then

H̊�b
(div 0,�) ∩ (Hδ,�a,�b

(�))⊥δ−1 = curl H̊�b
(curl,�).

Proof. Note that the adjoint of D := δ∇ as operator on L2(�) equipped with 〈·, ·〉δ−1 with 
domD = H̊1

�a
(�) is D∗ = −δ div with domain H̊�b

(div, �).3 Hence,

L2(�) = ranD ⊕δ−1 kerD∗

= δ∇H̊1
�a

(�) ⊕δ−1 H̊�b
(div 0,�)

(5)

By Corollary 3.2 and (5) we have

δ∇H̊1
�a

(�) ⊕δ−1 Hδ,�a,�b
(�) ⊕δ−1 curl H̊�b

(curl,�)

= L2(�) = δ∇H̊1
�a

(�) ⊕δ−1 H̊�b
(div 0,�).

Hence,

Hδ,�a,�b
(�) ⊕δ−1 curl H̊�b

(curl,�) = H̊�b
(div 0,�)

and intersecting both sides with (Hδ,�a,�b
(�))⊥δ−1 finishes the proof. �

3 Here we used that the weak and strong approach to H̊� (div, �) coincide.

b
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Lemma 3.4. The space XH is a Hilbert space with the inner product 〈x, y〉XH := 〈x, y〉H =
〈x, Hy〉L2(�). Moreover, ranA0 ⊆ XH and in particular XH is invariant under the semigroup T0
that is generated by A0.

Proof. Since H : L2(�) → L2(�) is a positive, bounded and boundedly invertible operator, 
〈·, ·〉L2(�) is equivalent to 〈·, ·〉XH . The closedness of the operators div and γν

∣∣
�0

implies the 

closedness of H(div 0, �) = ker div in L2(�) and kerγν

∣∣
�0

in H(div, �). Hence, H̊�0(div 0, �)

is closed in L2(�), which implies the closedness of XH.
By the definition of XH and Corollary 3.3 we have

XH =
[

H(div 0,�) ∩Hε,∂�,∅(�)⊥ε−1

H̊�0(div 0,�) ∩Hμ,�1,�0(�)
⊥

μ−1

]
=
[

curl H(curl,�)

curl H̊�0(curl,�)

]

=
[

0 curl
− curl 0

][
H̊�0(curl,�)

H(curl,�)

]
=
[

0 curl
− curl 0

]
H︸ ︷︷ ︸

⊇A0

H−1
[

H̊�0(curl,�)

H(curl,�)

]
︸ ︷︷ ︸

⊇domA0⊇ ranA0.

By [9, ch. II sec. 2.3], XH ⊇ ranA0 implies that XH is invariant under the semigroup T0 that is 
generated by A0. �

Finally, we introduce the differential operator and its domain that describes the dynamic of 
our system.

Definition 3.5. We define A := A0
∣∣
XH

, which we regard as an operator A : domA ⊆ XH →XH. 
The domain of A is given by domA = domA0 ∩XH, i.e.,

A :
{

domA0 ∩XH ⊆ XH → XH,

x �→ A0x.

Note that A is a generator of a contraction semigroup, since A0 is a generator of a contraction 
semigroup and XH is closed and invariant under the semigroup T0 generated by A0. In particular, 
the semigroup T that is generated by A is given by T (t) = T0(t)

∣∣
XH

, see e.g., [9, ch. II sec. 2.3].

4. Semi-uniform stability

We will regard the semigroup T that is generated by the operator A from the previous section, 
defined in Definition 3.5. Our goal is to show that this semigroup is semi-uniformly stable.

Definition 4.1. Let A be the generator of the strongly continuous and bounded semigroup 
(T (t))t≥0 on a Hilbert space X. Then we say that (T (t))t≥0 is semi-uniformly stable, if there 
exists a continuous and decreasing function f : [0, +∞) → [0, +∞) with limt→+∞ f (t) = 0
and

‖T (t)x‖X ≤ f (t)‖x‖domA (6)

for every x ∈ domA, where ‖·‖domA denotes the graph norm of A.
354



N. Skrepek and M. Waurick Journal of Differential Equations 394 (2024) 345–374
The difference between uniform stability and semi-uniform stability is that on the right-hand 
side of (6) there is the graph norm of the generator A instead of just the norm of the Hilbert 
space X.

It is very common to define semi-uniform stability by an equivalent characterization, namely 
item (iii) of the next theorem.

Theorem 4.2 ([2]). Let T be a strongly continuous and bounded semigroup generated by A. 
Then the following assertions are equivalent.

(i) T is semi-uniformly stable.
(ii) ‖T (t)(A − λ)−1‖ → 0 for all λ ∈ ρ(A).

(iii) ‖T (t)A−1‖ → 0.
(iv) iR ⊆ ρ(A).

Hence, by the previous theorem, the question about semi-uniform stability of A reduces to the 
following problem.

Problem 4.3. Show for every ω ∈R that iω ∈ ρ(A) or equivalently that iω /∈ σ(A).

A compact resolvent simplifies the task of finding resolvent points. Hence, the following the-
orem from [16, Thm. 4.1] will reduce the problem such that we only need make sure that iω is 
not an eigenvalue, see Theorem 4.6.

Theorem 4.4 (Compact embedding, [16, Thm. 4.1]). Let (�, �a) be a strongly Lipschitz pair, 
�b = ∂� \ �a and δ : � → R3×3 such that the corresponding multiplication operator is in 
Lb(L2(�)) and strictly positive. Then

Ĥ�a (curl,�) ∩ δ−1Ĥ�b
(div,�)

cpt
↪→ L2(�),

where 
cpt
↪→ denotes that the inclusion map is compact.

In particular, as a consequence of this compact embedding we obtain the following proposi-
tion. A special case for ε = μ = 1 has been regarded in [16, Thm. 5.6].

Proposition 4.5. The operator A has a compact resolvent.

Proof. By definition of A we have domA = domA0 ∩ XH. Hence, by construction and Theo-
rem 4.4 we have

domA ⊆
[

εĤ∂�(curl,�) ∩ H(div,�)

μĤ�1(curl,�) ∩ Ĥ�0(div,�)

]
cpt
↪→ L2(�). �

Hence, A has only point spectrum. So we only need to check, whether ker(A − iω) = {0} for 
all ω ∈R. For convenience we provide a proof for this conclusion.

Theorem 4.6. Let X be a Hilbert space and A : domA ⊆ X → X be a closed and densely 
defined operator with compact resolvent. Then σ(A) = σp(A), i.e., the spectrum of A contains 
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only eigenvalues. Moreover, σ(A) is countable and has no accumulation points (or at most ∞ as 
accumulation point, if we regard the spectrum as subset of C ∪ {∞}).

Proof. Let λ ∈ ρ(A). Then (A − λ)−1 is a compact operator. Hence, the spectrum of (A − λ)−1

contains only countable eigenvalues that can only accumulate at 0. By the spectral mapping 
theorem (for unbounded operators or linear relations) we have

σ
(
(A − λ)−1)= (

σ(A − λ)
)−1

.

Hence, the claim is true for A − λ. By shifting this operator by λ and again apply the spectral 
mapping theorem, we conclude the claim also for A. �

Now in order to show ker(A − iω) = {0} we make the following observation for supposed 
eigenvalues.

Lemma 4.7. If iω ∈ iR is an eigenvalue of A, then the corresponding eigenvector x =
[

D
B

]
satisfies πτ

∣∣
�1

ε−1D = 0 and γτ

∣∣
�1

μ−1B = 0.

Proof. By Lemma B.14 and the boundary condition of A (πτ ε
−1D = −kγτμ

−1B on �1), we 
have

Re〈(A − iω)x︸ ︷︷ ︸
=0

, x〉XH = Re〈Ax,x〉XH − Re iω〈x, x〉XH

= Re〈πτ ε
−1D, γτμ

−1B〉L2(�1)

= Re〈−kγτμ
−1B, γτμ

−1B〉L2(�1)

= −Re‖k1/2γτμ
−1B‖L2(�1)

.

Hence, γτ

∣∣
�1

μ−1B = 0 and by the boundary condition we also have πτ

∣∣
�1

ε−1D = 0. �
Since the unique continuation principle from Appendix A only works for ω �= 0 we need to 

check 0 ∈ ρ(A) separately.

Proposition 4.8. 0 ∈ ρ(A).

Proof. Note that by Theorem 4.6 the spectrum σ(A) contains only eigenvalues. Hence, if we 
assume that 0 �∈ ρ(A), then 0 is an eigenvalue. Then by Lemma 4.7 the corresponding eigen-

vector x =
[

D
B

]
satisfies πτ

∣∣
�1

ε−1D = 0 = γτ

∣∣
�1

μ−1B. Combined with the remaining boundary 

condition for D we obtain πτ ε
−1D = 0 on ∂�. Thus, for φ ∈ H(curl, �), using Ax = 0, we 

obtain

0 =
〈
curl ε−1D︸ ︷︷ ︸

=0

, φ
〉
L2(�)

=
〈
ε−1D, curlφ

〉
L2(�)

.

Hence, D ⊥ε−1 curl H(curl, �) and since D ∈ curl H(curl, �) (by x ∈XH), we conclude D = 0.
356



N. Skrepek and M. Waurick Journal of Differential Equations 394 (2024) 345–374
Similarly, for ψ ∈ H̊�0(curl, �) we have

0 =
〈
curlμ−1B,ψ

〉
L2(�)

=
〈
μ−1B, curlψ

〉
L2(�)

,

which implies that B ⊥μ−1 curl H̊�0(curl, �). Since B ∈ curl H̊�0(curl, �) we conclude B = 0, 
which leads to x = 0. Therefore, 0 is not an eigenvalue and 0 ∈ ρ(A). �

Now we have collected all the tools to prove that the dynamic part of Maxwell’s equation is 
semi-uniformly stable.

Theorem 4.9. The operator A (from Definition 3.5) generates a semi-uniformly stable semigroup 
(T (t))t≥0.

Proof. By Theorem 4.2 we have already reduced the question to Problem 4.3, i.e., we have to 
show iR ⊆ ρ(A). By Proposition 4.5, A has a compact resolvent, which implies that the spectrum 
σ(A) contains only eigenvalues (Theorem 4.6).

If iw ∈ iR \ {0} is an eigenvalue of A, then by Lemma 4.7 the corresponding eigenvector has 
vanishing tangential traces on �1. From the principle of unique continuation (Proposition A.3) 
follows that this eigenvector can only be 0. Hence, there are no non-zero imaginary eigenvalues 
and consequently iR \ {0} ⊆ ρ(A).

Finally, Proposition 4.8 yields 0 ∈ ρ(A). Thus iR ⊆ ρ(A) and the semigroup that is generated 
by A is semi-uniformly stable. �

Since every solution of the system (1) can be decomposed into an equilibrium and a dynamic 
part (that solves the abstract Cauchy problem corresponding to A), we conclude the main theo-
rem.

Theorem 1.1. Let 
[

E0
H0

]
∈
[

Ĥ(curl,�)∩ε−1H(div,�)

Ĥ�1 (curl,�)∩μ−1Ĥ�0 (div,�)

]
be an initial value that satisfies the bound-

ary conditions

πτ E0 = 0, γνH0 = 0 on �0 and πτ E0 + kγτ H0 = 0 on �1,

and Gauß laws div εE0 = ρ and divμH0 = 0. Then the corresponding solution 
[

E
H

]
(t, ζ ) of (1)

converges to an equilibrium state 
[

Ee
He

]
(ζ ) for t → ∞. More precisely there exists a monotone 

decreasing f : [0, +∞) → [0, +∞) with limt→+∞ f (t) = 0, which is independent of the initial 
values such that∥∥∥∥[E

H

]
(t, ·) −

[
Ee
He

]∥∥∥∥
L2(�)

≤ f (t)

(∥∥∥∥[E0
H0

]
−
[

Ee
He

]∥∥∥∥
L2(�)

+
∥∥∥∥[ curl E0

curl H0

]∥∥∥∥
L2(�)

)
.

Recall that[
Hε,∂�,∅(�)

H (�)

]
= H−1

[
H∂�,∅,ε(�)

H (�)

]
and x ⊥H−1 y ⇔ H−1x ⊥H H−1y.
μ,�1,�0 �1,�0,μ
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Proof. Let 
[

Ee
He

]
be a solution of (3) with h = γτ

∣∣
�1

H0, i.e., an equilibrium state. Then we define 
the initial value for the “dynamic” part by[

D0
B0

]
:=
[
ε 0
0 μ

]
︸ ︷︷ ︸

=H−1

[
E0 − Ee
H0 − He

]
.

Note that 
[

Ee
He

]
is in general—depending on the cohomology groups—not unique. Moreover, [

D0
B0

]
satisfies div D0 = div B0 = 0 and γν

∣∣
�0

B0 = 0, but is not necessarily in 
[ Hε,∂�,∅(�)

Hμ,�1,�0 (�)

]⊥H
. 

Hence, we shift 
[

Ee
He

]
by the 

[ Hε,∂�,∅(�)

Hμ,�1,�0 (�)

]
part of 

[
E0−Ee
H0−He

]
w.r.t. 〈·, ·〉H−1 such that 

[
E0−Ee
H0−He

]
∈[ H∂�,∅,ε (�)

H�1,�0,μ(�)

]⊥H−1
and consequently (the updated) 

[
D0
B0

]
is in 

[ Hε,∂�,∅(�)

Hμ,�1,�0 (�)

]⊥H
. Hence, 

[
D0
B0

]
∈

XH and even in domA.
We denote the semi-uniformly stable semigroup that is generated by A by (T (t))t≥0 and the 

decay function by g (Theorem 4.9). Hence, the solution 
[

D
B

]
(t, ·) := T (t) 

[
D0
B0

]
of the dynamic 

part satisfies ∥∥∥∥[D
B

]
(t, ·)

∥∥∥∥
L2(�)

≤ g(t)

∥∥∥∥[D0
B0

]∥∥∥∥
domA

The solution of (1) is then given by[
E
H

]
(t, ·) =

[
ε−1D
μ−1B

]
(t, ·) +

[
Ee
He

]
.

Note that H =
[

ε−1 0
0 μ−1

]
is a bounded and boundedly invertible operator, which implies that 

c−1‖x‖L2(�) ≤ ‖Hx‖L2(�) ≤ c‖x‖L2(�) for a suitable c > 0. Therefore,∥∥∥∥[E
H

]
(t, ·) −

[
Ee
He

]∥∥∥∥
L2

=
∥∥∥∥[ ε−1D

μ−1B

]∥∥∥∥
L2

≤ c

∥∥∥∥[D
B

]∥∥∥∥
L2

≤ cg(t)

(∥∥∥∥[D0
B0

]∥∥∥∥
L2

+
∥∥∥∥[ curl E0

curl H0

]∥∥∥∥
L2

)
≤ c(c + 1)g(t)︸ ︷︷ ︸

=:f (t)

(∥∥∥∥[E0
H0

]
−
[

Ee
He

]∥∥∥∥
L2

+
∥∥∥∥[ curl E0

curl H0

]∥∥∥∥
L2

)
. �

5. Conclusion

We have shown that Maxwell’s equation without damping terms can be semi-uniformly sta-
bilized by a simple boundary feedback. This was done without any geometric assumptions on 
the boundary like the geometric control condition, convexity, star-shapedness, etc. and with only 
mild conditions on the matrix-valued functions ε and μ, i.e., strict positivity and Lipschitz con-
tinuity.
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The key ingredients were a compact resolvent and a unique continuation principle. The other 
arguments do not really depend on our particular differential operator, but can also be done for 
an entire class of systems. In particular the port-Hamiltonian systems that are discussed in [22,
21]. In fact, if there were a generalization of the compact resolvent and the unique continuation 
principle for those port-Hamiltonian systems, we could conclude the same semi-uniform stability 
result.

Data availability

No data was used for the research described in the article.

Appendix A. Unique continuation

The first unique continuation principle for inhomogeneous and anisotropic Maxwell’s equa-
tions is from [12]. However, we will use a further developed version for Lipschitz continuous 
parameters from [13].

For ε and μ as in the beginning and ω �= 0 we regard the following stationary system,

curl H = iωεE,

curl E = −iωμH.
(7)

Recall that ε and μ are strictly positive matrix-valued functions. In particular, there exists a 
c > 0 such that

c−1 ≤ ε(ζ ) ≤ c and c−1 ≤ μ(ζ ) ≤ c for all ζ ∈ �

and there exists a C > 0 such that

‖ε‖W1,∞(�) + ‖μ‖W1,∞(�) ≤ C,

where W1,∞(�) denotes the Sobolev space of Lipschitz continuous functions.
The next theorem is from [13, Thm. 1.1].

Theorem A.1. Let H, E ∈ L2
loc(�) be a solution of (7). Then there exist ρ, s > 0 such that for 

r0 < r1 < r2/2 < ρ with Br2(x0) ⊆ �, we have

∫
Br1 (x0)

∥∥[ E
H

]∥∥2 dλ≤ C

⎛⎜⎝ ∫
Br0 (x0)

∥∥[ E
H

]∥∥2 dλ

⎞⎟⎠
τ ⎛⎜⎝ ∫

Br2 (x0)

∥∥[ E
H

]∥∥2 dλ

⎞⎟⎠
1−τ

,

where C > 0 depends on ε, μ, r1, r2, s and τ = (2r1)
−s−r−s

2
r−s
0 −r−s

2
.4

For convenience we show explicitly how this theorem implies a unique continuation principle.

4 Note that τ ∈ (0, 1).
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Fig. 2. Illustration of the proof of Theorem A.2.

Theorem A.2 (Principle of unique continuation). Let � be connected and E, H ∈ L2
loc(�) be a 

solution of (7) such that 
[

E
H

] ∣∣
U

= 0 for a non-empty open set U ⊆ �. Then 
[

E
H

]
= 0.

Proof. We define

M :=
{
ζ ∈ �

∣∣∣∃r > 0 s.t.
[

E
H

] ∣∣
Br (ζ )

= 0
}

and show that M is open and closed in �.
Clearly, M is open in �: By definition, for ζ0 ∈ M there exists an r0 > 0 such that [

E
H

] ∣∣
Br0 (ζ0)

= 0. Hence, for every ζ ∈ Br0(ζ0) we have 
[

E
H

] ∣∣
Br0−|ζ−ζ0|(ζ )

= 0, which implies 

ζ ∈ M and therefore Br0(ζ0) ⊆ M .
On the other hand: Let (ζn)n∈N be a sequence in M that converges to ζ ∈ �. For every ζn ∈ M

there exists an rn > 0 such that 
[

E
H

] ∣∣
Brn (ζn)

= 0. If there exists an n ∈ N such that ζ ∈ Brn(ζn), 
then clearly ζ ∈ M . Hence we may assume that rn ≤ |ζn − ζ | for the remaining proof.

Let ρ be the number of Theorem A.1. We choose r > 0 such that Br (ζ ) ⊆ � and we choose 
n0 ∈N such that |ζn0 − ζ | < 1

8 min(r, ρ). We define (as illustrated in Fig. 2)

r0 = rn0 , r1 = 2|ζn0 − ζ |, r2 = 6|ζn0 − ζ |,

which implies

r0 < r1 < r2/2 < ρ.
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By Theorem A.1 we conclude 
[

E
H

] ∣∣
Br1 (ζn0 )

= 0 and consequently 
[

E
H

] ∣∣
Br1/2(ζ )

= 0, which im-

plies ζ ∈ M and M is closed. By assumption M is non-empty, because ∅ �= U ⊆ M , hence we 
conclude that M = �, as � is connected. �
Proposition A.3. Let 

[
E
H

]
∈ L2

loc(�) be a solution of (7). If there exists a � ⊆ ∂� relatively open 

such that πτ

∣∣
�

E = 0 = γτ

∣∣
�

H, then 
[

E
H

]
= 0

Note that πτ

∣∣
�

E = 0 is equivalent to γτ

∣∣
�

E = 0.5 Hence, it does not matter, whether we 
assume πτ

∣∣
�

E = 0 or γτ

∣∣
�

E = 0 in previous proposition. The same holds for H.

Proof. We choose a point ξ0 in the interior of � and a radius r > 0 such that also Br (ξ0) ∩ ∂� is 

in the interior of �. Then we extend 
[

E
H

]
on �̂ = � ∪ Br (ξ0) by

Ê =
{

E, on �,

0, on Br (ξ0) \ �,
and Ĥ =

{
H, on �,

0, on Br (ξ0) \ �.

Note that ̂E and Ĥ are still in H(curl, ̂�), because for φ ∈ C̊∞(�̂)

〈curlφ, Ê〉L2(�̂) = 〈curlφ,E〉L2(�) = 〈φ, curl E〉L2(�) + 〈γτφ, πτ E︸︷︷︸
=0

〉L2(�)

= 〈φ,̂curl E〉L2(�̂),

where

̂curl E =
{

curl E, on �,

0, on Br (ξ0) \ �.

We can prove the same for H and obtain that 
[

Ê
Ĥ

]
is a solution of (7) on �̂. Since 

[
Ê
Ĥ

] ∣∣
Br (ξ0)\� =

0, we can apply Theorem A.2 which leads to 
[

Ê
Ĥ

]
= 0. �

Appendix B. Background on the differential and trace operators

In this section we want to give a little background on the operator A0 defined in (4) and 
ultimately justify that it generates a contraction semigroup. We still have the standing assumption 
that (�, �1) is a strongly Lipschitz pair. In order to do that we have to explain the boundary 
spaces and traces that correspond to curl. We recall the operator A0 from (4)

A0 =
[

0 curl
− curl 0

][
ε−1 0

0 μ−1

]
︸ ︷︷ ︸

=H

5 The difference between these trace is just a pointwise 90 degree rotation perpendicular to the normal vector.
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domA0 =
{[

D
B

]
∈ H−1

[
Ĥ∂�(curl,�) ∩ H̊�0(curl,�)

Ĥ�1(curl,�)

]
∣∣∣∣πτ

∣∣
�1

ε−1D + kγτ

∣∣
�1

μ−1B = 0

}
.

In order to better understand the domain of A0 we have to take a closer look at the traces πτ

∣∣
�0

, 

πτ

∣∣
�1

and γτ

∣∣
�1

. First of all note that the differential operator curl can be written as

curlf =
⎡⎣ 0 −∂3 ∂2

∂3 0 −∂1
−∂2 ∂1 0

⎤⎦⎡⎣f1
f2
f3

⎤⎦
=
⎛⎝∂1

⎡⎣0 0 0
0 0 −1
0 1 0

⎤⎦
︸ ︷︷ ︸

=:L1

+ ∂2

⎡⎣ 0 0 1
0 0 0

−1 0 0

⎤⎦
︸ ︷︷ ︸

=:L2

+ ∂3

⎡⎣0 −1 0
1 0 0
0 0 0

⎤⎦
︸ ︷︷ ︸

=:L3

⎞⎠⎡⎣f1
f2
f3

⎤⎦ .

(8)

Therefore, it has the form curl = L∂ := ∑3
i=1 ∂iLi . Hence, the operator matches the form of 

the differential operators in [22]. That work presents a general approach to boundary traces and 
boundary spaces that correspond to such differential operators. These boundary spaces and traces 
can be derived by an integration by parts formula. Nevertheless we want to present here a sketch 
of this construction that is adjusted just for the curl operator.

For the curl operator we have for f, g ∈ C̊∞(R3) the following integration by parts formula

〈curlf,g〉L2(�) + 〈f,− curlg〉L2(�) = 〈ν × f, (ν × g) × ν〉L2(∂�). (9)

We can restrict ourselves to the boundary space L2
τ (∂�) := {φ ∈ L2(∂�) | ν · φ = 0}, as both 

arguments of the L2(∂�) inner product in (9) belong to that space anyway.
In the following we want to show that similar to the integration by parts formula for div-∇ we 

can extend the integration parts formula by continuity on the maximal domain of the differential 
operator. The price to pay is that the L2 inner product on the boundary has to be replaced by a 
dual pairing. For div-∇ this would be the dual pairing of (H1/2(∂�), H−1/2(∂�)), which forms a 
Gelfand triple with the pivot space L2(∂�). Unfortunately unlike in the div-∇ case the boundary 
spaces that correspond to curl do not establish a Gelfand triple, at least not in the usual sense 
where we have continuous embeddings. However, we get something that is almost a Gelfand 
triple, what we call quasi Gelfand triple, a notion that was introduced in [22] or more detailed 
in [21,23].

In particular we will give a sketch of the construction of the boundary spaces and traces that 
correspond to curl. Note that these boundary spaces are characterized by H− 1

2 (curl∂�, ∂�) and 
H− 1

2 (div∂�, ∂�) in [5], however these characterizations are also not easily accessible and need 
to be adapted for partial boundary traces. Therefore, we prefer the following approach.
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B.1. Boundary spaces

Note that the integration by parts formula (9) can easily be extended to H1(�). Hence, we 
want to take the step to extend (9) from H1(�) to H(curl, �). In order to do this we introduce the 
spaces

M(�1) =
{

(ν × γ0g
∣∣
�1

) × ν

∣∣∣ g ∈ H1(�)
}

⊆ L2
τ (�1),

M̊(�1) =
{

(ν × γ0g
∣∣
�1

) × ν

∣∣∣ g ∈ H̊1
�0

(�)
}

⊆ L2
τ (�1).

Note that every element of M̊(�1) can be extended to M(∂�) by setting it to zero on �0. We 
define the spaces Vτ (�1) and V̊τ (�1) as the completions of M(�1) and M̊(�1), respectively, with 
respect to the range norms

‖φ‖Vτ (�1)
:= inf

g∈H1(�)
(ν×γ0g|�1 )×ν=φ

‖g‖H(curl,�) for φ ∈ M(�1),

‖φ‖V̊τ (�1)
:= inf

g∈H̊1
�0

(�)

(ν×γ0g|�1 )×ν=φ

‖g‖H(curl,�) for φ ∈ M̊(�1),

respectively. These two norms are really norms by [22, Lem. 6.3]. By construction we have that

πτ

∣∣
�1

:
{

H1(�) ⊆ H(curl,�) → Vτ (�1),

g �→ (ν × γ0g
∣∣
�1

) × ν,

and π̊τ

∣∣
�1

:
{

H̊1
�0

(�) ⊆ H̊�0(curl,�) → V̊τ (�1),

g �→ (ν × γ0g
∣∣
�1

) × ν,

are continuous w.r.t. ‖·‖H(curl,�) and ‖·‖Vτ (�1)
(‖·‖V̊τ (�1)

). Note that the restriction bar 
∣∣
�1

at 

πτ

∣∣
�1

is an abuse of notation. It indicates that we are only interested in what the trace does 

on �1. Moreover, note that one characterization of H̊�0(curl, �) is the closure of H̊1
�0

(�) w.r.t. 
‖·‖H(curl,�), see e.g., [3, Thm. 4.5]. Now we can extend πτ

∣∣
�1

and π̊τ

∣∣
�1

by density and continuity 

to H(curl, �) and H̊�0(curl, �), respectively. We will use the same symbols for these extensions 
and call both of them tangential trace. If �1 = ∂�, then clearly Vτ (∂�) = V̊τ (∂�) and we will 
just write πτ instead of πτ

∣∣
∂�

or π̊τ

∣∣
∂�

. Sometimes it is convenient to also leave out the circle 
on π̊τ

∣∣
�1

even if we work with elements of H̊�0(curl, �) that are mapped into V̊τ (�0). Moreover, 

if it is clear from the context, we will also just use πτ instead of πτ

∣∣
�1

and π̊τ

∣∣
�1

.

Remark B.1. For a short moment we want to distinguish between πτ

∣∣
�1

and its continu-

ous extension on H(curl, �), by denoting the extension by πτ

∣∣
�1

. Then it can be shown that 

πτ

∣∣
�1

: H(curl, �) → Vτ (�1) is surjective and

kerπτ

∣∣ = kerπτ

∣∣ H(curl,�)
.

�1 �1
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An analogous result holds for π̊τ

∣∣
�1

, see [22, Lem. 6.4].

Basically we can repeat the previous construction for the twisted tangential trace f �→ ν ×
γ0f . Note that for smooth functions g �→ (ν × g

∣∣
∂�

) × ν is really the projection of g on its 
tangential component. Therefore, the name tangential trace is justified for πτ . Furthermore, for 
smooth functions we have ν × f

∣∣
∂�

= ν × πτf , which tells us that ν × f
∣∣
∂�

is a 90 degree 
(or π2 ) rotated version of the tangential component of f

∣∣
∂�

. The axis of rotation is the normal 
vector ν.

Even though it is basically a repetition we will execute the construction also for the twisted 
tangential trace. Hence, we define the twisted version of M(�1) and M̊(�1) as

M×(�1) :=
{

ν × γ0f
∣∣
�1

∣∣∣ f ∈ H1(�)
}

⊆ L2
τ (�1)

and M̊×(�1) :=
{

ν × γ0f
∣∣
�1

∣∣∣ f ∈ H̊1
�0

(�)
}

⊆ L2
τ (�1),

respectively. Furthermore we define V×
τ (�1) and V̊×

τ (�1) as the completion of M×(�1) and 
M̊×(�1), respectively with respect to the range norms

‖ψ‖V×
τ (�1)

:= inf
f ∈H1(�)

ν×γ0f |�1 =ψ

‖f ‖H(curl,�) for ψ ∈ M×(�1)

and ‖ψ‖V̊×
τ (�1)

:= inf
f ∈H̊1

�0
(�)

ν×γ0f |�1 =ψ

‖f ‖H(curl,�) for ψ ∈ M̊×(�1),

respectively. The cross symbol × in the superscript indicates that we deal with a twisted version 
of M(�1) and Vτ (�1), respectively. In particular, the operation ν × · can be extended to a unitary 
mapping between Vτ (�1) and V×

τ (�1), and a unitary operator between V̊τ (�1) and V̊×
τ (�1). By 

construction the mapping

γτ

∣∣
�1

:
{

H1(�) ⊆ H(curl,�) → V×
τ (�1),

f �→ ν × γ0f
∣∣
�1

,

and γ̊τ

∣∣
�1

:
{

H̊1
�0

(�) ⊆ H̊�0(curl,�) → V̊×
τ (�1),

f �→ ν × γ0f
∣∣
�1

,

is continuous w.r.t. ‖·‖H(curl,�) and ‖·‖V×
τ (�1)

(‖·‖V̊×
τ (�1)

). Hence, we can extend these mappings 

by continuity and density to H(curl, �) and H̊�0(curl, �), respectively. We still denote these 
extension by γτ

∣∣
�1

and γ̊τ

∣∣
�1

. If �1 = ∂� we will just write γτ . Also if it is clear from the 

context that we only want to regard the trace on �1, we will just write γτ instead of γτ

∣∣
�1

. We 

will sometimes also omit the circle at γ̊τ , if it is clear that we regard elements in H̊�0(curl, �).
Note that the τ in the subscript of L2

τ (�1), V̊τ (�1), Vτ (�1), V̊×
τ (�1) and V×

τ (�1) indicates 
that these spaces are tangential on �1.
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B.2. Dual pairing

Next we want to show that there is a dual pairing between V̊τ (�1) and V×
τ (�1), i.e., 

(V̊τ (�1), V×
τ (�1)) is a dual pair. Clearly, the same holds for their twisted versions (Vτ (�1),

V̊×
τ (�1)), which is then just a corollary.

Lemma B.2. Let φ ∈ M̊(�1) and ψ ∈ M×(�1). Then

|〈ψ,φ〉L2
τ (�1)

| ≤ ‖ψ‖V×
τ (�1)

‖φ‖V̊τ (�1)
.

Proof. Note that M̊(�1) = πτ

∣∣
�1

H̊1
�0

(�) and M×(�1) = γτ

∣∣
�1

H1(�). Hence, there exists a g ∈
H̊1

�0
(�) and an f ∈ H1(�) such that πτ

∣∣
�1

g = φ and γτ

∣∣
�1

f = ψ . By γ0g
∣∣
�0

= 0, the integration 
by parts formula (9) and Cauchy–Schwarz’s inequality we have∣∣∣〈ψ,φ〉L2

τ (�1)

∣∣∣= ∣∣∣〈γτ

∣∣
�1

f,πτ

∣∣
�1

g
〉
L2

τ (�1)

∣∣∣= ∣∣∣〈γτ

∣∣
�1

f,πτ

∣∣
�1

g
〉
L2

τ (∂�)

∣∣∣
= ∣∣〈curlf,g〉L2(�) − 〈f, curlg〉L2(�)

∣∣
≤ ‖curlf ‖L2(�)‖g‖L2(�) + ‖f ‖L2(�)‖curlg‖L2(�)

≤
√

‖curlf ‖2
L2(�)

+ ‖f ‖2
L2(�)

√
‖g‖2

L2(�)
+ ‖curlg‖2

L2(�)

= ‖f ‖H(curl,�)‖g‖H(curl,�).

Since this is true for all g ∈ H̊1
�0

(�) and f ∈ H1(�) such that πτ

∣∣
�1

g = φ and γτ

∣∣
�1

f = ψ , we 
can apply an infimum on the right-hand side and obtain

|〈ψ,φ〉L2
τ (�1)

| ≤ inf‖f ‖H(curl,�)‖g‖H(curl,�) = ‖ψ‖V×
τ (�1)

‖φ‖V̊τ (�1)
. �

Now we can define the following dual pairing by a limit.

Definition B.3. Let φ ∈ V̊τ (�1) and ψ ∈ V×
τ (�1). Then there exist sequences (φn)n∈N in M̊(�1)

and (ψk)k∈N in M×(�1) that converge to φ and ψ , respectively. We define the dual pairing 
between V̊τ (�1) and V×

τ (�1) by

〈ψ,φ〉V×
τ (�1),V̊τ (�1)

:= lim
n→∞
k→∞

〈ψn,φk〉L2
τ (�1)

. (10)

As short notation we will use 〈ψ, φ〉V×
τ ,V̊τ

, if �1 is clear.

This dual pairing is really well-defined, since we can use Lemma B.2 to show that the net on 
the right-hand side is a Cauchy net. Strictly speaking the mapping 〈·, ·〉V×

τ (�1),V̊τ (�1)
is a priori 

just a sesquilinear form. However, we will show that it is indeed a dual pairing, i.e., the mapping

� :
{
V×

τ (�1) → V̊τ (�1)
′,

ψ �→ 〈ψ, ·〉V×
τ (�1),V̊τ (�1)

,
(11)
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is an isometric isomorphism. Note that we use the convention of always regarding the antid-
ual space, which is more convenient when switching between dual pairings and inner products. 
Hence, V̊τ (�1)

′ denotes the antidual space.
Moreover, for every such sesquilinear form we define the version with switched arguments by 

the complex conjugate of the original sesquilinear form, i.e.,

〈φ,ψ〉V̊τ (�1),V×
τ (�1)

:= 〈ψ,φ〉V×
τ (�1),V̊τ (�1)

.

However, before we show that we have indeed defined a dual pairing we show that we can 
extend the integration by parts formula with 〈·, ·〉V×

τ (�1),V̊τ (�1)
for arbitrary f ∈ H(curl, �) and 

g ∈ H̊�0(curl, �).

Lemma B.4. For f ∈ H(curl, �) and g ∈ H̊�0(curl, �) we have

〈curlf,g〉L2(�) − 〈f, curlg〉L2(�) = 〈γτf,πτ g〉V×
τ (�1),V̊τ (�1)

.

Proof. Note that by (9) we have for f ∈ C̊∞(R3) and g ∈ C̊∞
�0

(R3)

〈curlf,g〉L2(�) − 〈f, curlg〉L2(�) = 〈γτf,πτ g〉L2
τ (�1)

Since C̊∞(R3) is dense in H(curl, �) and C̊∞
�0

(R3) is dense in H̊�0(curl, �), the assertion follows 
by continuity. �

Note that V̊τ (�1) and V×
τ (�1) are by construction isometrically isomorphic to the quotient 

spaces H̊�0(curl, �)
/

ker π̊τ

∣∣
�1

and H(curl, �)
/

kerγτ

∣∣
�1

, respectively. These spaces are in turn 

isometrically isomorphic to (ker π̊τ

∣∣
�1

)⊥ and (kerγτ

∣∣
�1

)⊥, respectively, where the orthogonal 

complement is taken in H̊�0(curl, �) and H(curl, �), respectively. Hence, the mappings π̊τ

∣∣
�1

and γτ

∣∣
�1

are isometric isomorphisms from these orthogonal complements into V̊τ (�1) and 
V×

τ (�1), respectively. Moreover, we have

C̊∞(�) ⊆ ker π̊τ

∣∣
�1

and C̊∞
�1

(�) ⊆ kerγτ

∣∣
�1

.

Hence, for the orthogonal complements (in H(curl, �)) we have the reverse inclusion. The next 
lemmas also show similarities to the notion of boundary data spaces from [18, Sec. 5.2].

We have already discussed that H̊�0(curl, �) can be characterized by the closure of H̊1
�0

(�)

in H(curl, �). However, there is also the weak characterization: f ∈ H̊�0(curl, �), if and only if 
there exists an h ∈ L2(�) such that for all g ∈ C̊∞

�1
(�)

〈h,g〉L2(�) = 〈f, curlg〉L2(�).

For details see [3, Thm. 4.5].

Lemma B.5. The orthogonal complement of C̊∞
�1

(�) in H(curl, �) can be characterized by

C̊∞ (�)⊥ = {
f ∈ H(curl,�)

∣∣ curlf ∈ H̊� (curl,�), curl curlf = −f
}
.
�1 0
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Proof. Let f ∈ C̊∞
�1

(�)⊥. Then for every g ∈ C̊∞
�1

(�) we have

0 = 〈f,g〉H(curl,�) = 〈f,g〉L2(�) + 〈curlf, curlg〉L2(�).

Hence, curlf ∈ H̊�0(curl, �) and curl curlf = −f .
On the other hand, if curlf ∈ H̊�0(curl, �) and curl curlf = −f , then we have for every 

g ∈ C̊∞
�1

(�), by the weak characterization of H̊�0(curl, �),

〈f,g〉H(curl,�) = 〈f,g〉L2(�) + 〈curlf, curlg〉L2(�)

= −〈curl curlf,g〉L2(�) + 〈curlf, curlg〉L2(�) = 0. �
Corollary B.6. For every ψ ∈ V×

τ (�1) there exists an f ∈ H(curl, �) such that

ψ = γτf, ‖ψ‖V×
τ (�1)

= ‖f ‖H(curl,�) = ‖curlf ‖H(curl,�), (12)

curlf ∈ H̊�0(curl,�) and curl curlf = −f. (13)

Moreover, for every g ∈ H̊�0(curl, �) we have

〈curlf,g〉H(curl,�) = 〈ψ,πτg〉V×
τ (�1),V̊τ (�1)

.

Proof. Recall that V×
τ (�1) is isometrically isomorphic to (kerγτ

∣∣
�1

)⊥. Hence, for every ψ ∈
V×

τ (�1) there exists an f ∈ (kerγτ

∣∣
�1

)⊥ ⊆ C̊∞(�)⊥ ⊆ H(curl, �) such that γτf = ψ and 

‖ψ‖V×
τ (�1)

= ‖f ‖H(curl,�). By Lemma B.5 we have curlf ∈ H̊�0(curl, �) and curl curlf = −f . 
Moreover, we have

‖curlf ‖2
H(curl,�) = ‖curlf ‖2

L2(�)
+ ‖curl curlf︸ ︷︷ ︸

=−f

‖2
L2(�)

= ‖f ‖2
H(curl,�) = ‖ψ‖2

V×
τ (�1)

.

Finally, we have

〈ψ,πτg〉V×
τ (�1),V̊τ (�1)

= 〈γτf,πτ g〉V×
τ (�1),V̊τ (�1)

= 〈curlf,g〉L2(�) − 〈f, curlg〉L2(�)

= 〈curlf,g〉L2(�) + 〈curl curlf, curlg〉L2(�)

= 〈curlf,g〉H(curl,�). �
Theorem B.7. The spaces V̊τ (�1) and V×

τ (�1) form the dual pair (V̊τ (�1), V×
τ (�1)) with the 

dual pairing 〈·, ·〉V×
τ (�1),V̊τ (�1)

defined in (10).

Proof. Note that the mapping � from (11) is well-defined and bounded by the estimate

|〈ψ,φ〉V×
τ (�1),V̊τ (�1)

| ≤ ‖ψ‖V×
τ (�1)

‖φ‖V̊τ (�1)

from Lemma B.2. In particular, ‖�(ψ)‖V̊τ (�1)
′ ≤ ‖ψ‖V×

τ (�1)
. Moreover, since the mapping 

πτ : H̊� (curl, �) → V̊τ (�1) is continuous, the composition g �→ μ(πτg) for fixed μ ∈ V̊τ (�1)
′

0
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is continuous from H̊�0(curl, �) to C. This implies that there exists an h ∈ H̊�0(curl, �) such 
that

μ(πτg) = 〈h,g〉H(curl,�) = 〈h,g〉L2(�) + 〈curlh, curlg〉L2(�)

for all g ∈ H̊�0(curl, �). In particular for g ∈ C̊∞(�) ⊆ kerπτ we have

0 = 〈h,g〉L2(�) + 〈curlh, curlg〉L2(�)

and consequently curlh ∈ H(curl, �) and curl curlh = −h. We define h̃ := − curlh. Then for an 
arbitrary g ∈ H̊�0(curl, �) we have

μ(πτg) = 〈h,g〉L2(�) + 〈curlh, curlg〉L2(�)

= 〈− curl curlh,g〉L2(�) + 〈curlh, curlg〉L2(�)

= 〈curl(− curlh︸ ︷︷ ︸
=h̃

), g〉L2(�) − 〈− curlh︸ ︷︷ ︸
=h̃

, curlg〉L2(�)

= 〈curl h̃, g〉L2(�) − 〈h̃, curlg〉L2(�) = 〈γτ h̃,πτ g〉V×
τ (�1),V̊τ (�1)

.

This implies μ = �(γτ h̃) and therefore the surjectivity of �. Hence, it is left to show 
‖�(ψ)‖V̊τ (�1)

′ ≥ ‖ψ‖V×
τ (�1)

.

For ψ ∈ V×
τ (�1) we choose f ∈ H(curl, �) as in Corollary B.6

‖�(ψ)‖V̊τ (�1)
′ = sup

φ∈V̊τ (�1)\{0}

|〈ψ,φ〉V×
τ (�1),V̊τ (�1)

|
‖φ‖V̊τ (�1)

= sup
g∈H̊�0 (curl,�)\kerπτ |�1

|〈γτf,πτ g〉V×
τ (�1),V̊τ (�1)

|
‖πτg‖V̊τ (�1)

≥ sup
g∈H̊�0 (curl,�)\{0}

|〈curlf,g〉H(curl,�)|
‖g‖H(curl,�)

(13)= ‖curlf ‖H(curl,�)

= ‖ψ‖V×
τ (�1)

which finishes the proof. �
Note that by construction our dual pair (V̊τ (�1), V×

τ (�1)) is not only a dual pair, but its dual 
pairing is determined by an inner product, the inner product of the pivot space L2

τ (�1). This spe-
cial situation gives additional structure. In particular we call (V̊τ (�1), L2

τ (�1), V×
τ (�1)) a quasi 

Gelfand triple, see [22,23] for a detailed discussion of this notion. Roughly speaking a quasi 
Gelfand triple is a Gelfand triple without continuous embeddings, but instead “closed embed-
dings”. Fig. 3 illustrates the difference to “ordinary” Gelfand triples.
368



N. Skrepek and M. Waurick Journal of Differential Equations 394 (2024) 345–374
Fig. 3. Difference between ordinary and quasi Gelfand triples.

B.3. L2 tangential traces

In order to define the set Ĥ�1(curl, �) properly we have to explain what we mean by πτf ∈
L2(�1). First, we want to recall that the space H̊�0(curl, �) is defined as the set of all f ∈
H(curl, �) that satisfy

〈curlf,ϕ〉L2(�) − 〈f, curlϕ〉L2(�) = 0 for all ϕ ∈ C̊∞
�1

(R3).

Note that, as we have already used, this set coincides with the closure of H̊1
�0

(�) in H(curl, �), 
see [3].

Finally we define what it means for an f ∈ H(curl, �) to have an L2(�1) tangential trace. 
There are two a priori different approaches: a weak approach by representation in an inner prod-
uct and a strong approach by convergence.

Definition B.8 (weak L2
τ (�1) tangential trace).

• For f ∈ H(curl, �) we say γτf is weakly in L2
τ (�1), if there exists an h ∈ L2

τ (�1) such that

〈curlf,ϕ〉L2(�) − 〈f, curlϕ〉L2(�) = 〈h,πτϕ〉L2(�1)
for all ϕ ∈ C̊∞

�0
(R3).

We then say γτf = h weakly (on �1).
• For g ∈ H(curl, �) we say πτg is weakly in L2

τ (�1), if there exists an h ∈ L2
τ (�1) such that

〈curlϕ,g〉L2(�) − 〈ϕ, curlg〉L2(�) = 〈γτϕ,h〉L2(�1)
for all ϕ ∈ C̊∞

�0
(R3).

We then say πτg = h weakly (on �1).

Definition B.9 (strong L2
τ (�1) tangential trace).

• For f ∈ H(curl, �) we say γτf is strongly in L2
τ (�1), if there exists a sequence (ϕn)n∈N in 

C̊∞(R3) and an h ∈ L2
τ (�1) such that

‖f − ϕn‖H(curl,�) → 0 and ‖γτϕn − h‖L2(� ) → 0.

1
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We then say γτf = h strongly (on �1).
• For g ∈ H(curl, �) we say πτg is strongly in L2

τ (�1), if there exists a sequence (ϕn)n∈N in 
C̊∞(R3) and an h ∈ L2

τ (�1) such that

‖g − ϕn‖H(curl,�) → 0 and ‖πτϕn − h‖L2(�1)
→ 0.

We then say πτg = h strongly (on �1).

Note that it is not really necessary to have separate definition for πτf ∈ L2
τ (�1) and γτf ∈

L2
τ (�1), as they are actually equivalent (both weakly and strongly, respectively). In particular, if 

one of these tangential trace is L2
τ (�1), then we can calculate the other by the following formula 

πτf = γτf × ν or equivalently ν × πτf = γτf .
Note that we can replace ϕ ∈ C̊∞

�0
(R3) by ϕ ∈ H̊1

�0
(�) (by a density argument) in the weak 

definition.

Remark B.10. The previous definitions can also be formulated in terms of the boundary spaces 
V×

τ (�1) and V̊τ (�1):

• We say ψ ∈ V×
τ (�1) is weakly in the pivot space L2

τ (�1), if there exists an h ∈ L2
τ (�1) such 

that

〈ψ,φ〉V×
τ (�1),V̊τ (�1)

= 〈h,φ〉L2
τ (�1)

for all φ ∈ M̊(�1).

Hence, γτf ∈ L2(�1) weakly, if

〈γτf,πτ g〉V×
τ (�1),V̊τ (�1)

= 〈h,πτ g〉L2
τ (�1)

for all g ∈ H̊1
�0

(�).

Clearly, we can do the same for Vτ (�1) and πτ .
• We say ψ ∈ V×

τ (�1) is strongly in L2
τ (�1), if there exists a sequence (ψn)n∈N in M×(�1)

and an h ∈ L2
τ (�1) such that

‖ψn − ψ‖V×
τ (�1)

→ 0 and ‖ψn − h‖L2
τ (�1)

→ 0.

Hence, γτf ∈ L2(�1) strongly, if there exists a sequence (fn)n∈N in H1(�) and an h ∈
L2

τ (�1) such that

‖γτfn − γτf ‖V×
τ (�1)

→ 0 and ‖γτfn − h‖L2
τ (�1)

→ 0.

Note that γτ : (kerγτ

∣∣
�1

)⊥ → V×
τ (�1) is a unitary mapping. Therefore, we can modify 

(fn)n∈N such that we also have ‖fn − f ‖H(curl,�) → 0.6

6 If we really want to prove this modification of fn such that the other properties are preserved, we would also use 
kerγτ

∣∣ = kerγτ

∣∣ ∩ H1(�)
H(curl,�)

.

�1 �1
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Since we have a proper definition for πτf ∈ L2
τ (�1) we can finally properly define the space 

Ĥ�1(curl, �).

Definition B.11. We define

Ĥ�1(curl,�) := {f ∈ H(curl,�) |πτf ∈ L2
τ (�1) weakly}

= {f ∈ H(curl,�) |γτf ∈ L2
τ (�1) weakly}

and endow this set with the “natural” inner product

〈f,g〉Ĥ�1 (curl,�)
:= 〈f,g〉L2(�) + 〈curlf, curlg〉L2(�) + 〈πτf,πτg〉L2

τ (�1)

= 〈f,g〉L2(�) + 〈curlf, curlg〉L2(�) + 〈γτf, γτ g〉L2
τ (�1)

.

Note that for f ∈ H(curl, �) it is straightforward to show, that πτf is strongly in L2
τ (�1)

implies it is also weakly in L2
τ (�1) and the weak L2

τ (�1) trace equals the strong one. Hence, 
the set of all f ∈ H(curl, �) that satisfy πτf ∈ L2

τ (�1) strongly is a subspace of Ĥ�1(curl, �). 
In particular it is the closure of H1(�) in Ĥ�1(curl, �) w.r.t. ‖·‖Ĥ�1 (curl,�)

. The question that 
immediately arises is: “Do these sets coincide?” or equivalently

“Is H1(�) dense in Ĥ�1(curl, �) (w.r.t. ‖·‖Ĥ�1 (curl,�)
)?”

For �1 = ∂� this question was answered in the affirmative in [4]. For general �1 this question is 
formulated as an open problem in [25] (to be precise the dual version of this question was asked 
in [25], which we will formulate later in (15)) and was recently answered in the affirmative in 
[24].

If we want to characterize L2 tangential traces on �1 for functions that additionally have a 
homogeneous tangential trace on �0, then it turns out to be more convenient to regard this in 
a combined way. More precisely, we do not look at the space Ĥ�1(curl, �) ∩ H̊�0(curl, �), but 
at Ĥ∂�(curl, �) ∩ H̊�0(curl, �). This means that we regard functions that have an L2 tangential 
trace on the entire boundary and on one part of the boundary this tangential trace vanishes. One 
might hope that these spaces coincide, but it is even unclear to us, whether

H̊�0(curl,�) ∩ H̊�1(curl,�) = H̊∂�(curl,�) (14)

holds true. Hence, these questions can be seen as open problems.
Anyway, for our purpose it suffices to work with Ĥ∂�(curl, �) ∩ H̊�0(curl, �). A strong ap-

proach to that space would be to regard limits of H̊1
�0

(�) elements w.r.t. ‖·‖Ĥ∂�(curl,�)
, which is 

the closure of H̊1
�0

(�) in Ĥ∂�(curl, �) ∩ H̊�0(curl, �). Again the question that arises is:

“Is H̊1
�0

(�) dense in Ĥ∂�(curl,�) ∩ H̊�0(curl,�) (w.r.t. ‖·‖Ĥ∂�(curl,�)
)?” (15)

This is the actual formulation of the open problem of [25, eq. (5.20)] and at the end of section 5 
in [25]. Also this question was answered in the affirmative recently in [24].

Hence, long story short, we do not have to distinguish between strongly and weakly in 
L2(�1) in neither case. This is in particular of advantage, because we want to formulate our 
τ
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boundary conditions in L2
τ (�1) and the framework of quasi Gelfand triples would regard one of 

V̊τ (�1) ∩L2
τ (�1) and V×

τ (�1) ∩L2
τ (�1) strongly and the other one – for duality reasons – weakly. 

Therefore, now we avoid to have two different concepts of L2
τ (�1) tangential traces.

B.4. Contraction semigroup

Finally, we want to consider the actual question of this section. It lies in the nature of block 

operators like 
[

0 curl
− curl 0

]
, that if we define the domain of the upper right block strongly, then 

we have to define the domain of the (adjoint) lower left block weakly. The same goes for the 
corresponding traces. In this particular case, where both operators are basically the same, this 
leads to the strange situation where we have to introduce two a priori different definitions for 
the domain of the same operator. Luckily as we have discussed in this section both approaches 
coincide and consequently we just need one definition.

In order to justify that A0 generates a contraction semigroup we want to use [21, Thm. 5.3.6]
or originally [22, Thm. 7.6 & Ex. 7.8]. For convenience we provide [21, Thm. 5.3.6] as Theo-
rem B.12. In order to understand how this theorem is applicable, we have to translate our setting 
into their notation. In particular our setting is a special case of a general theory. As we have re-
marked at the beginning of this section our operator fits into the framework of [22], because we 
can decompose the curl operator into curl =∑3

i=1 ∂iLi = L∂ , as we did in (8). The correspond-
ing Hermitian transposed operator LH

∂ is in our case (by the skew-adjointness of Li)

LH
∂ :=

∑
i=1

∂iL
H
i = − curl .

Consequently, the block operator P∂ that is regarded by the theory in [22,21] matches our block 
differential operator

P∂ :=
[

0 L∂

LH
∂ 0

]
=
[

0 curl
− curl 0

]
.

In our case the additional P0 is just 0. For the boundary operators and boundary space we have 
the following translation

πL = πτ , Lν = γτ and L2
π (�1) = L2

τ (�1).

Theorem B.12 ([21, Thm. 5.3.6]). Let M be a strictly positive linear operator on L2
π(�1). Then 

the operator A = (P∂ + P0)H with domain

domA =
{

x ∈H−1
[

H̊�0(L
H
∂ ,�)

H(L∂,�)

] ∣∣∣∣ πL(Hx)LH + MLν(Hx)L = 0 in L2
π (�1)

}

generates a contraction semigroup, where Hx =
[

(Hx)
LH

(Hx)L

]
.

Note that the previous theorem applied to our situation has the allegedly weaker condition[
D
B

]
∈ H−1

[
H̊�0(curl,�)

H(curl,�)

]
instead of

[
D
B

]
∈H−1

[
Ĥ∂�(curl,�) ∩ H̊�0(curl,�)

Ĥ (curl,�)

]
.

�1
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However, since the boundary condition is formulated in L2
τ (�1), we can also integrate this di-

rectly into the space and obtain our original condition.7 Therefore, we finally conclude the 
following corollary.

Corollary B.13. The operator A0 from (4) generates a contraction semigroup.

Alternatively, it was also shown in [25] that A0 generates a contraction semigroup.
Note for elements in the domain of A0 we can apply the extended integration by parts formula 

Lemma B.4 and replace the dual pairing by an L2
τ (�1) inner product as all elements in domA0

have L2 tangential traces. Hence, applying this integration by parts formula twice for both rows 
of A0 gives the following lemma.

Lemma B.14. For x =
[

Dx

Bx

]
, y =

[
Dy

By

]
∈ domA0 we have

〈A0x, y〉H + 〈x,A0y〉H =
〈
πτ ε

−1Dx, γτμ
−1By

〉
L2(�1)

+
〈
γτμ

−1Bx,πτ ε
−1Dy

〉
L2(�1)

and in particular

Re〈A0x, x〉H = Re
〈
πτ ε

−1Dx, γτμ
−1Bx

〉
L2(�1)

.
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